Cloning of Codon Optimized Subtilisin E in pTEF-MF

Introduction

As the test expression of the Subtilisin E gene from *Bacillus subtilis* was not successful, we used a codon optimized variant of the Subtilisin E gene. As a host we chose the *S. cerevisiae* strand CENPK2-1D again as it has the deficiencies we need for selection. For vector backbone we tried the constitutive pTEF-MF vector again. A scheme of the cloning can be seen below:

![Diagram of cloning](https://via.placeholder.com/150)

Figure 1: Cloning of codon optimized Subtilisin E into pTEF-MF

For all agarose gels we used 1% agarose and 1 kb Thermo scientific ladder 08:

Figure 2: 1kb Thermo scientific ladder
Day 1

Codon Optimization
We used the IDT codon optimization tool to convert the *E. coli* optimized Subtilisin E gene into one that *S. cerevisiae* can translate better.
The sequence of the codon optimized construct can be seen as part BBa_K2020023.

Day 7

Dilution
After the gBlock from IDT arrived we diluted the it as described in their instructions.

PCR Amplification of gBlock
Just restricting the gBlock and then clone it into a vector does not work without prior amplification.
That’s why we first amplified it with the primers YP0028 and YP0029 according to the PCR protocol.

<table>
<thead>
<tr>
<th>ID</th>
<th>92°C</th>
<th>1 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>92°C</td>
<td>20 sec</td>
</tr>
<tr>
<td>A</td>
<td>60-70°C</td>
<td>30 sec</td>
</tr>
<tr>
<td>E</td>
<td>72°C</td>
<td>50 sec</td>
</tr>
<tr>
<td>FE</td>
<td>72°C</td>
<td>3 min</td>
</tr>
<tr>
<td>S</td>
<td>4°C</td>
<td>storage</td>
</tr>
</tbody>
</table>

Agarose Gel
We prepared an agarose gel to see if the PCR product is present and has the right size of about 1100 bp.

![Agarose Gel](image)

Figure 3; Agarose gel; 1: PCR product after amplification; 0: ladder

In both samples PCR product is visible on agarose gel at the right size.
PCR Clean Up
We did a PCR clean-up of the amplified codon optimized Subtilisin E.

Nanodrop
We did a nanodrop of the cleaned up samples of codon optimized Subtilisin E to determine DNA concentration.
1. 244.7 ng/µl
2. 220.9 ng/µl

Restriction
We double digested the codon optimized Subtilisin E and the pTEF-MF backbone with EcoRI and Xhol.

Dephosphorylation
We dephosphorylated the double digested backbone pTEF-MF.

Ligation
The amplified codon optimized Subtilisin E was ligated with the dephosphorylated pTEF-MF backbone and as control we made a self-ligation of the dephosphorylated backbone.

Pipetting scheme:
1. 1:9 ratio regarding the concentration in ng/µl
2. 1:9 ratio regarding DNA molecules
We ligated half of each sample for 3h at 16°C and the other half overnight in case this was not efficient enough.

Transformation in E. coli Dh5 alpha
We transformed 2 and 5 µl of the 3 h ligation into DH5alpha respectively.

Day 9

Transformation Results
The transformation was successful, but we only had one colony.

Colony PCR
We made a colony PCR of the picked clone with primers YP0016 and YP0017. As the ideal annealing temperature was not yet known, we used a gradient with 11 different temperatures.

<table>
<thead>
<tr>
<th>Cycles</th>
<th>98°C</th>
<th>58-65°C</th>
<th>72°C</th>
<th>4°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>30 sec</td>
<td>30 sec</td>
<td>90 sec</td>
<td>storage</td>
</tr>
<tr>
<td>D</td>
<td>10 sec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>90 sec</td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td></td>
<td></td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agarose Gel
After performing the colony PCR, we loaded the samples on an agarose gel. The expected size was about 1400 bp.

![Agarose Gel Image]

Figure 4; Agarose gel; 00: PCR product of colony 00; 1: PCR product of colony 1; 2: PCR product of colony 2; 3: PCR product of colony 3; 4: PCR product of colony 4; 5: PCR product of colony 5; 6: PCR product of colony 6; 7: PCR product of colony 7; 8: PCR product of colony 8; 9: PCR product of colony 9; 10: PCR product of colony 10

It is visible that every temperature created PCR product at the right size and all temperatures worked for our primers.

Day 10

Plasmid Isolation
We isolated the plasmid of the overnight pTEF-MF with codon optimized Subtilisin E we made during the colony PCR.

Sequencing
We sent the isolated plasmid in for sequencing with primers YP0019 and YP0030.
Day 11

Sequencing Results
The sequencing results of clone 2 were perfect.

Transformation in Yeast
We transformed the clone 2 of pTEF-MF with codon optimized Subtilisin E into CENPK2-1D.

Results
After day 12 we had the expression system with confirmed sequence our host organism. After the transformation in CENPK2-1D we tested the expression of Subtilisin E.