Clonogenic Survival Assay

Results

Figure 1. Surviving fraction of cells when irradiated at 5 Gy and treated with a peptide construct or a DMSO and DTT control

Figure 2. Surviving fraction of HCT116 cells when irradiated at 5 Gy and treated with respective peptide/control

Interpretation

The radio-protective effects of BBI on HCT 116 cells were examined using clonogenics assay. The viability of HCT116 cells was observed using this assay. Previous literature has shown that BBI exhibits radio-protective effects on cells that have a functional P53 gene, however our results do not support this assertion. The HCT116 cell line used in our study had a functional p53 gene, however no increase in survivability was observed. The study conducted had only 1 replicate however, so more replicates need
to be conducted to further verify this conclusion.

Project Achievements

BBI may have greater considerations to its functions than simply TP53 as a functional peptide, and more work must be done to elucidate its mechanism.

Future Plans

More replicates need to be conducted in HCT116 in order to further examine the effects of BBI on cancer cell line. Another study needs to be conducted in different cell lines in order to examine the survivability effects of BBI, and whether the p53 gene is the only gene required for the radio-protective effect. A second clonogenics assay needs to be performed using primary fibroblast cells, in order to support the previous literature.

Double Strand Break Assay using Immunofluorescence

Results

![Image](image.png)

Figure 3. The Histology assay performed on primary fibroblast cells (1BR4) using primary mouse H2AX and rabbit 53BP1 antibody. The secondary antibody used was Alexa 488, Cy3 and DAPI. The cells were fixed at regular intervals. Only 1 replicate is shown.
Interpretation

The radio-protective effects of BBI were quantified using immunohistochemistry, where the number of DNA breaks were quantified after ionizing radiation dose and BBI administration. The radio-protective effects of oxidized or reduced peptide were examined and the graphs were plotted to analyze the differences. This experiment was conducted in order to elucidate whether the cysteine bridge present in BBI is necessary for its functioning, as a result only 2 time points (4hrs and 8hrs) were used since all the time points would have given us the same result. And it was found that there was no difference between the radio-protective effect of oxidized and reduced BBI. The number of double strand breaks repaired were fairly similar, at 4hrs and 8hrs time-point. (Note: The peptide was reduced with DDT). In order to elucidate the function and mechanism of BBI, a dosage study was also conducted with multiple IR dosage and multiple BBI concentration. The results were inconclusive however, since the inappropriate antibody was used. The staining was done using 53BP1, which is a protein that gets recruited in the later stages of the repair signal cascade, the 15-minute time point was not enough time for it to be tagged. The number of foci got capped at 25, since not all the protein was localized yet; as a result, we couldn’t detect any effect of different doses of BBI. Since our dosage study was inconclusive, and we didn’t have the resources or the time to run another assay, we used the previous literature to find the appropriate concentration. It has been shown in previous studies that 10-30uM of BBI is required for radioprotection, as a result we used 30uM for the histology assay. We found that BBI does have an effect; it reduces the number of foci

![Graph showing foci over a period of time](image)
in nucleus, however, only 2 replicates are conducted yet.

Project Achievements

BBI was shown to decrease the amount of double strand DNA breaks, characterizing the part.

Future Plans

More studies need to be conducted in order to fully elucidate the mechanism and functioning of BBI using immunohistochemistry. The dosage study needs to be conducted with H2AX antibody instead of 53BP1, in order to eliminate the localization problem that occurred with 53BP1. H2AX is a phosphorylation marker, which happens quite quickly after DNA damage. The study conducted to differentiate between the two form of BBI (oxidized and reduced) can be repeated with more time points to ensure that the conclusion drawn is supported with more evidence.

Mass Spectrometry of BBI

Results

Figure 5. Standard mass spectra

![Figure 5. Standard mass spectra](image)

Figure 6. Mass Spectra of BBI in the +3 excited state

![Figure 6. Mass Spectra of BBI in the +3 excited state](image)
Interpretation

During the mouse trials, blood was taken from mice at various time points to determine whether or not BBI with the TD-1 tag was able to migrate into the bloodstream. Unfortunately, when assayed with mass mass spectrometry there was no expected peptide construct found. Instead, we have chosen to publish the known peptide’s spectra to aid future iGEM teams should they desire to work with TD-1/BBI.

Project Achievements

BBI with the TD-1 tag was not found to be in any blood taken from the mice when assayed with mass mass spectrometry.

Future Plans

More studies need to be conducted in order to fully elucidate the mechanism and functioning of BBI with the TD-1 tag. It would be prudent to assay the TD-1 tag on its own, to observe whether it is the BBI attached to the tag that is disabling the transdermal function of the TD-1 tag.

Immunohistochemical staining on Cryo Mouse Cross Section
Results

Figure 8. The chassis treatment mice skin tissue (day 5, *Bacillus subtilis*, #5) was subjected to Immunohistochemical staining. The sample was then visualized by fluorescent microscopy. The blue color corresponds to APC anti-mouse CD45 antibody (lymphocytes), the green color corresponds to FITC anti-mouse Ly6G antibody (neutrophils), and the red color corresponds to Pharmingen PE anti-mouse CD49b antibody (platelets). The yellow color is a combination of the red color and green color.

Interpretation
The control tissue was not stained properly, and as such the image of the section holds no scientific value. Despite the failure of staining in control tissue samples, behavioural conclusions can still be made. No unusual behaviour was observed in mice after the application of the patch. Furthermore, no rashes or any skin problems were observed on the mice skin.

Project Achievements
Behavioral data was obtained from the in-vivo mice testing, showing that the patch is not causing enough of an irritant for the mice to be discomforted.

Future Plans
In the future, we would like to perform immunohistological staining with all the treatments of skin tissue samples. Further steps would to be taken to ensure that patch adheres to the skin for the entirety of the treatment. As well, for more statistical significance, study needs to be carried out with more mice per treatment.