Team number: SS16-G-(STA)-(FR)-(2)-(1)*

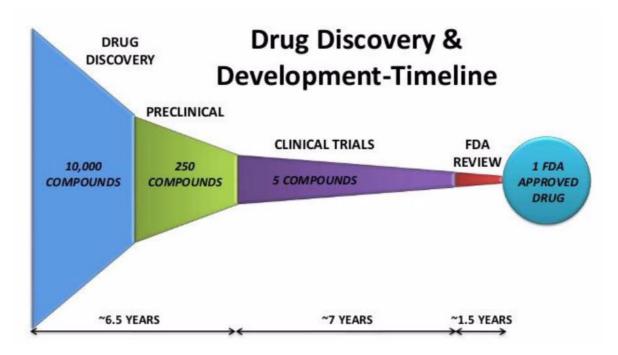
7 Appendix

References

1:http://www.europarl.europa.eu/sides/getDoc.do?language=de&type=IM-PRESS&reference=20100907IPR81606

2: https://www.bmbf.de/de/alternativen-zum-tierversuch-412.html

3: Vladimir Mironov, Richard P. Visconti, Vladimir Kasyanov, Gabor Forgacs, Christopher J. Drake, Roger R. Markwald (2009): Organ printing: Tissue spheroids as building blocks. Biomaterials Volume 30, Issue 12: 2164–2174doi:10.1016/j.biomaterials.2008.12.084


4: http://www.modernmeadow.com/#food

5:http://www.marketsandmarkets.com/Market-Reports/cell-based-assays-market-119917269.html

6:http://www.bccresearch.com/pressroom/bio/global-market-for-3d-cell-cultures-to-reach-\$2.2-billion-in-2019

Figure 1: Hypothesis

Nr.	Hypothesis	Interview-Test	Pass/Fail
1	Idea is feasible	7 out of 7	Pass
2	Trustable 3D-cell models are requested for drug discovery	6 out of 7	Pass
3	Flexibility to create co-cultures and special cell arrangements is requested for drug discovery	4 out of 7	Pass (barely)
4	Genetic modification of the cells in not an issue for drug discovery	1 out of 7	Fail

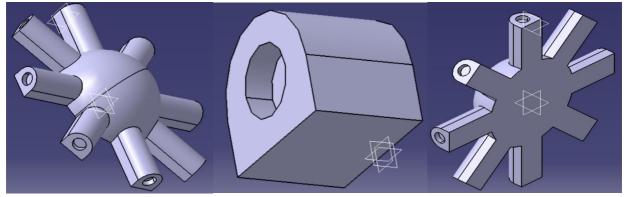


Figure 2: Illustration of the Drug development process.

http://de.slideshare.net/rahul_pharma/drug-discovery-and-development-10698574

Figure 3: Prototype

Our first prototype represents an abstract model of our printed and later connected cell culture. The left and the right one illustrates the cells with its connecting arms and the picture in the middle represents the adaptor to connect these cells. These 3D models were printed on an Ultimaker 2+ 3D printer.

The second prototype represents our actual product: a 96-well plate, filled with cell culture media and tissue. In each well a 3D printed piece of tissue is available. On the front site a barcode label is attached to be applied in a high-throughput screening (HTS) system.

Confidential

This document may not be distributed without the written permission of the authors.

Figure 4: Detailed informations on the technology

3D printing is currently revolutionizing many industries such as biotechnology. Very recently, there have been considerations to arrange cells in defined 3D structures by printing. In the future, this will allow doctors to take a patient's own cells to print customized organs. Thus far, these considerations fail due to numerous obstacles, the most essential one being that the natural linking process of cells takes one day or even more to complete. In contrast, the well-established 3D printing of plastic is based on the extremely fast alternation of printable plastic liquid and plastic hardening to build solid structures. We transfer this concept to 3D printing of tissue by genetic engineering of human cells to produce a "glue" which forces these cells to link to each other within milliseconds during the printing process. This technology bases on a biotin-streptavidin interaction, which is one of the strongest and fastest known reactions in biochemistry. Thus, building tissue structures in a fast and easy fashion will become reality.

The biotin-carrying cells are mixed with an also biotinylated linker molecule. This mixture is called bioink and is applied to the printhead. It prints the cell-linker mixture into a highly concentrated streptavidin solution. Streptavidin acts as an adapter by causing the cells and linker to connect to each other in a extremely stable and fast fashion, enabling to produce highly complex tissue structures. These can be used for various applications. In addition to using these tissues as a model system for drug discovery, testing cosmetics and performing research on them are highly desirable applications. In the future, this technology might be used to attain the dream of fully patient-derived replacement organs.

Confidential This document may not be distributed without the written permission of the authors.

Figure

បា

Business Model Canvas

Figure 6: Positioning Statement

For	pharmaceutical companies
Who need	to test drugs on tolerance
We offer our	3d printed cell cultures
Which	can be adjusted to individual needs and can be delivered quickly
In comparison to	other 3d cell culture sellers
Our product is much	more reliable because of plastic-like sticking together of the printed cells.

Figure 7: Calculation of COGS

# Artikel	Kosten	Einheit	Information	
Variable Kosten				
1 96 Well Platte		3 EUR / Platte	50 für 150 EUR	
2 Zelle		0,5 EUR / Platte		
3 Zellkulturmedium		7,7 EUR / Platte	160 EUR/I; 500 ul / Well; 2000 Wells/I; 20,8 Platten mit 11 + inkl. Phenolrot als pH-Indikator	
4 Streptavidin		0,5 EUR / Platte		
5 Sonstiges		5 EUR / Platte	Laborequipment	
6 Verpackung / Logistik		0,5 EUR / Platte	Anforderungen: konstante Temperatur; unempfindlich gegenüber Erschütterungen; robust	
7 Mitarbeiter		135 EUR / Platte	50 EUR/h; 5' / Well * 96 Well = 480' = 8h / Platte; Annahme: 3 Drucker;	
Fixe Kosten				
8 Raummiete		60 EUR / Platte	200.000 EUR / Jahr; 550 EUR/d; 60 EUR/Platte, wenn pro Tag 9 Platten gedruckt werden; 3 / Drucker * Tag	
9 Genexpressionsstudie		30 EUR / Platte	100.000 EUR / Jahr	
10 3D-Drucker EUR / Platte		EUR / Platte	2.500 EUR Anschaffungspreis; 3 Jahre Abschreibung; 9 Platten / Tag; 3285 Platten / Jahr;	

242,2 EUR / Platte

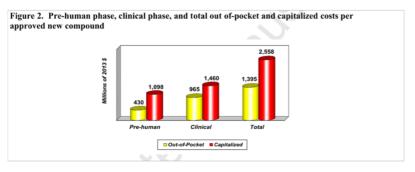
Figure 8: Competitors

3D Bioprinting Solutions	Russland	Biotechnologie	3dprint.com	Schilddrüsendruck	
3D Biotek	USA	Biotechnologie	3dbiotek.com	Poröse Plastik-Scaffolds	
3Dynamic Systems	UK	Biotechnologie, Konsumgüter	bioprintingsystems.com	Bioprinter-Bau	
Advanced Solutions Life Sciences	USA	Biotechnologie	bioassemblybot.com	Analyse, Design, Simulation und Fertigung von Zellstrukturen	
Aspect Biosystems	Kanada	Biotechnologie	aspectbiosystems.com	Gewebe drucken für Drug Testing	
BASF	Deutschland	Chemie	basf.de	Kooperation mit Poietis zur Erforschung von Hautgewebe	
Bio3D Technologies	Singapur	Biotechnologie	bio3d.tech	Herstellung eines 3D-Biodruckers	
BioBots	USA	Biotechnologie	biobots.io	Herstellung eines Desktop 3D-Biodruckers	
Cellink	Schweden	Biotechnologie	cellink.eu	Entwicklung von Biotinte du Herstellung eigener 3D-Biodrucker	
Cyfuse Biomedical	Japan	Biotechnologie	cyfusebio.com	Herstellung eines 3D-Biodruckers für Hautgewebe, Sheroid-Technol	ogie
EnvisionTEC	USA	Biotechnologie	envisiontec.com	Plastik-Strukturen o.ä.	
GeSIM	Radeberg	Biotechnologie	gesim-bioinstruments-microf	Bioprinter-Bau	
Medprin	China, Frankfurt	Biotechnologie	medprin.cn	Materialentwicklung zur Stabilisierung von Gewebsstrukturen	
MicoFab Technologies	USA	Biotechnologie	microfab.com	3D Drucker-Bau	
Modern Meadow	USA	Biotechnologie, Konsumgüter	modernmeadow.com	Kultivierung und 3D-Druck von Fleischzellstrukturen	
Nano3D Biosciences	USA	Biotechnologie	n3dbio.com	Entwicklung von in-vitro Modellen mittels Magnetisierung	ehört zu Greiner!
nScrypt	USA	Biotechnologie	nscrypt.com	Bioprinter-Bau	
Organovo	USA	Biotechnologie	organovo.com	Analyse, Design, Simulation und Fertigung von Zellstrukturen, Merc	k+J&J Kooperation f
OxSyBio	UK	Biotechnologie	oxsybio.com	Herstellung eines 3D-Biodruckers	
Poietis	Frankreich	Biotechnologie	poietis.com	Entwicklung eines laserbasierenden 3D-Biodruckers	
RegenHU	Schweiz	Biotechnologie	regenhu.com	Drucker und Biolnk für Drug discovery	
Revotek	China	Biotechnologie	-	Herstellung eines 3D-Biodruckers für Blutgefäße	
Shining3D	China	Maschinenbau	shining3d.com	Materialherstellung für 3D-Biodrucker	
SysENG	Salzgitter DE	Maschinenbau	syseng.de	Bioprinter-Bau	
TeVido Biodevices	USA	Biotechnologie	tevidobiodevices.com	3D-Druck von Zellstrukturen für Wundheilung	
BioBots.io				3D Bioprinter und Ink	
3D Biomatrix				3D zellkultur	
SpheroSelect					
InSphero				Drug Development als Hanging Drops	
SpheroTEC				Spheroide	
Greiner	3D-Zellkultur übe	r Magnete			
Unmittelbares Geschäftsfeld Vergleichbare Technologie					

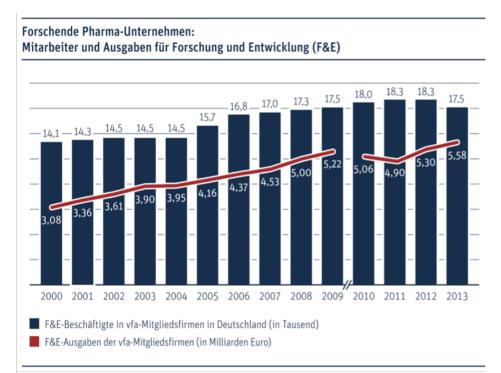
Manufacturers of Bio-3D-Printer

Manu	facturers of Bio-3D-Printer		
#	Enterprise	Country	Sector
1	3D Biotek	USA	Biotech
2	3Dynamic Systems	UK	Biotech, Consumer
3	Advanced Solutions Life Sciences	USA	Biotech
4	Bio3D Technologies	Singapore	Biotech
5	BioBots	USA	Biotech
6	EnvisionTEC	USA	Biotech
7	GeSIM	Germany	Biotech
8	Medprin	China, Germany	Biotech
9	MicoFab Technologies	USA	Biotech
10	nScrypt	USA	Biotech
11	OxSyBio	UK	Biotech
12	Poietis	France	Biotech
13	Revotek	China	Biotech
14	Shining3D	China	Material
15	SysENG	Germany	Production
16	BioBots.io	USA	Biotech,
	Direct Competition		
	3D Printing		
	Organovo	USA	
	Spheroid		
	InSphero AG	СН	
	Greiner Bio One International GmbH	GER	
	SpheroTec GmbH	GER	
	3D Biomatrix, Inc.	USA	

Figure 9: Market research results

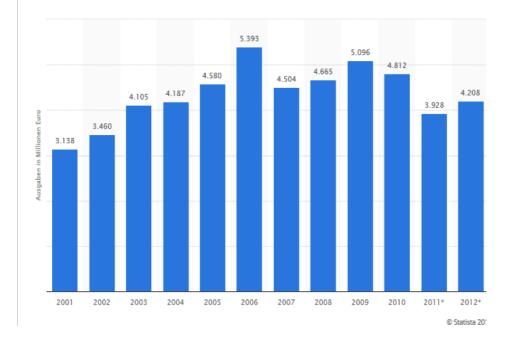

DiMasi, J.A., Grabowski, H.G., Hansen, R.W., INNOVATION IN THE PHARMACEUTICAL INDUSTRY: NEW ESTIMATES OF RandD COSTS,

Zulassung Medikamente: Was es kostet


Pro Medikament mit neuem Wirkstoff, das es zur Zulassung schafft als Medikament, muss ein Unternehmen Kosten von 1,0 bis 1,6 Milliarden US-Dollar veranschlagen; hierbei sind die fehlgeschlagenen Projekte (die ja auch bezahlt werden müssen) ebenso eingerechnet wie die Kapitalisierungskosten (d.h. die entgangenen Erträge durch jahrelanges Binden von Kapital). Das zeigt u.a. ein Bericht der Unternehmensberatung CRA International (Hrsg.) "The current state of Innovation in the pharmaceutialindustry", London 2008, der die Kostenschätzungen mehrerer Autoren auswertet. Mehr als die Hälfte der Ausgaben entfallen auf die klinische Entwicklung, insbesondere die logistisch extrem aufwendigen, multinationalen Phase-III-Studien.

zB Boehringer hat 30 Medikamente in präklinischer Pipeline.

➔ Unterschiedliche Studien geben Kosten um die 1,3 Mrd. an, bei DiMasi noch Opportunitätskosten einberechnet



Journal of Health Economics (2016), http://dx.doi.org/10.1016/j.jhealeco.2016.01.012

Aufwendungen für Forschung und Entwicklung der Pharmaindustrie in Deutschland in den Jahren 2001 bis 2012 (in Millionen Euro)

Die vorliegende Statistik zeigt die Aufwendungen für Forschung und Entwicklung der Pharmaindustrie in Deutschland i den Jahren 2001 bis 2012. Im Jahr 2001 beliefen sich die F&E-Aufwendungen der deutschen Pharmaindustrie auf rund 3,1 Milliarden Euro.

Team number: SS16-G-(STA)-(FR)-(2)-(1)*

Figue 10: Patentability

http://jolt.law.harvard.edu/digest/patent/patenting-bioprinting

https://www.gesetze-im-internet.de/patg/BJNR201170936.html

- Bioprinting-**Verfahrenspatente** leichter zu erhalten als Patente auf gedruckte Zellen oder Gewebe (vgl. § 1a und § 2a Abs. 3 PatG)

- gedruckte Zellen und Gewebe sind tendenziell patentierbar wenn genetisch verändert oder strukturell anders als natürlich vorkommender Form (Gewebestruktur wird aber in den nächsten Jahren aber immer ähnlicher zu natürlichem Gewebe und damit schwieriger zu patentieren)

- nicht-menschliche Zellen oder Gewebe leichter zu patentieren als menschliche

- bei Transplantation von gedruckten Zellen und Geweben evt. zu bedenken:

(§ 2a Abs. 1 Nr.2 : (1) Patente werden nicht erteilt für

Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen oder tierischen Körpers und Diagnostizierverfahren, die am menschlichen oder tierischen Körper vorgenommen werden. Dies gilt nicht für Erzeugnisse, insbesondere Stoffe oder Stoffgemische, zur Anwendung in einem der vorstehend genannten Verfahren.)

Noch zu prüfen:

§ 2a Abs. 3 Nr.1 : Im Sinne dieses Gesetzes bedeuten:

1."biologisches Material" ein Material, das genetische Informationen enthält und sich selbst reproduzieren oder in einem biologischen System reproduziert werden kann;

Kosten eines (deutschen) Patents:

Neuheitsrecherche vor der Anmeldung (optional): 800-1.500€

Anmeldegebühr: 40-60€ (schriftliche oder elektronische Einreichung)

Recherche+ Prüfungsverfahren: 400€ (einzeln teurer)

Jahresgebühren: Preis steigt von Jahr zu Jahr und (ab dem 3. Jahr beginnend mit 70€, siehe Liste)

für 20 Jahren: 13.170€

Anwalt: zwischen 1500€ - 4000€ (+1000-2000€ wenn an Anmeldung beteiligt, +1000 -1500 pro Einspruch gegen Prüfer)

Gebühr pro Einspruch: 200€

Confidential

This document may not be distributed without the written permission of the authors.

Figure 11: Initial Poster

Business Plan Basic Seminar summer semester 2016 Bio-Ink For 3D Printing Of Living Cells

Komplex 3D-Bioprinting designs based on ... our revolutionary Bio-Ink obtained by genetic engineering. [D] Final living tissue technology limitations, e.g. keeping cells alive in matrix. TECHNOLOGY Simple 3D-Bioprinting designs due to ... PRODUCT FUTURE TODAY Today's technology for 3D printing of tissue The idea will be implemented throughout the Our new approach based on genetically summer and will be presented at the iGEM biochemically functionalized scaffold competition at MIT (USA) later this year. has some major limitations, preventing engineered cells combined with a bioprinting from scaling. solves these problems. Name of Initiator: Christoph Gruber email: christophgruber@me.com mobile: 0151/24044107

