Difference between revisions of "Team:Slovenia"

Line 192: Line 192:
 
                         <b>Idea</b>
 
                         <b>Idea</b>
 
                     </a>
 
                     </a>
                     <span>  
+
                     <span>
 
<br/>
 
<br/>
 
</span>
 
</span>
Line 198: Line 198:
 
                         src="//2016.igem.org/wiki/images/c/cb/T--Slovenia--igemLogo.gif">
 
                         src="//2016.igem.org/wiki/images/c/cb/T--Slovenia--igemLogo.gif">
 
                     <!-- <p style="font-size:11px;">
 
                     <!-- <p style="font-size:11px;">
                             The iGEM symbol was drawn with a glass rod letter by letter on engineered human cells and imaged by a camera.  
+
                             The iGEM symbol was drawn with a glass rod letter by letter on engineered human cells and imaged by a camera.
                             Cells were transfected with constructs coding for the bacterial ion channel MscS, gas vesicles (GvpA and GvpC) and a Ca-dependent  
+
                             Cells were transfected with constructs coding for the bacterial ion channel MscS, gas vesicles (GvpA and GvpC) and a Ca-dependent
                             cyclic split luciferase reporter.
+
                             cyclic split luciferase reporter.
 
                     </p> -->
 
                     </p> -->
 
                     <div class="popup igemSign">
 
                     <div class="popup igemSign">
<span class="popuptext" id="igemSign">The iGEM symbol was drawn with a glass rod letter by letter on engineered human cells and imaged by a camera.  
+
<span class="popuptext" id="igemSign">The iGEM symbol was drawn with a glass rod letter by letter on engineered human cells and imaged by a camera.
Cells were transfected with constructs coding for the bacterial ion channel MscS, gas vesicles (GvpA and GvpC) and a Ca-dependent  
+
Cells were transfected with constructs coding for the bacterial ion channel MscS, gas vesicles (GvpA and GvpC) and a Ca-dependent
 
cyclic split luciferase reporter.</span>
 
cyclic split luciferase reporter.</span>
 
                     </div>
 
                     </div>
Line 254: Line 254:
 
                                             Sensitivity of mammalian cells to ultrasound or other mechanical stimuli was enhanced by the introduction
 
                                             Sensitivity of mammalian cells to ultrasound or other mechanical stimuli was enhanced by the introduction
 
                                             of mechanosensitive ion channels and/or by the expression of protein gas vesicles from bacteria. Influx of
 
                                             of mechanosensitive ion channels and/or by the expression of protein gas vesicles from bacteria. Influx of
                                             calcium through channels is sensed by formation of a complex between calmodulin and M13 peptide that can  
+
                                             calcium through channels is sensed by formation of a complex between calmodulin and M13 peptide that can
 
                                             result in a rapid light emission by cells (used for cell painting) or reconstitution of a split protease.</span>
 
                                             result in a rapid light emission by cells (used for cell painting) or reconstitution of a split protease.</span>
 
                                     </div>
 
                                     </div>
Line 260: Line 260:
 
                                         <span class="popuptext" id="module2"><b>Protease based signaling <br/>and information processing:</b><br/>
 
                                         <span class="popuptext" id="module2"><b>Protease based signaling <br/>and information processing:</b><br/>
 
                                             Combinations of proteolytic activities against specific targets resulted in activation of a reporter or another
 
                                             Combinations of proteolytic activities against specific targets resulted in activation of a reporter or another
                                             protease, which forms the basis for the design of a new type of rapid signaling pathways and construction of  
+
                                             protease, which forms the basis for the design of a new type of rapid signaling pathways and construction of
 
                                             logic functions.</span>
 
                                             logic functions.</span>
 
                                     </div>
 
                                     </div>
 
                                     <div class="popup module3">
 
                                     <div class="popup module3">
                                         <span class="popuptext" id="module3"><b>Orthogonal site-specific proteases: </b><br/> A collection of orthogonal  
+
                                         <span class="popuptext" id="module3"><b>Orthogonal site-specific proteases: </b><br/> A collection of orthogonal
 
                                             site-specific proteases that recognize different targets was prepared as split proteins, whose activity against
 
                                             site-specific proteases that recognize different targets was prepared as split proteins, whose activity against
 
                                             selected targets can be induced by stimulation with an external signal such as light or chemicals.</span>
 
                                             selected targets can be induced by stimulation with an external signal such as light or chemicals.</span>
Line 270: Line 270:
 
                                     <div class="popup module4">
 
                                     <div class="popup module4">
 
                                         <span class="popuptext"
 
                                         <span class="popuptext"
                                               id="module4"> <b>Protease-triggered rapid secretion <br/> of therapeutic proteins:</b> <br/>A rapid cellular  
+
                                               id="module4"> <b>Protease-triggered rapid secretion <br/> of therapeutic proteins:</b> <br/>A rapid cellular
                                             response by secretion of a protein is triggered by the proteolytic cleavage of an endoplasmic reticulum retention  
+
                                             response by secretion of a protein is triggered by the proteolytic cleavage of an endoplasmic reticulum retention
 
                                             peptide. After the cleavage the cargo protein is moved from the ER, and secreted as therapeutic protein.</span>
 
                                             peptide. After the cleavage the cargo protein is moved from the ER, and secreted as therapeutic protein.</span>
 
                                     </div>
 
                                     </div>
Line 377: Line 377:
 
                         <h1 class="ui centered dividing header"><span id="requirements" class="section"> &nbsp; </span>Medal
 
                         <h1 class="ui centered dividing header"><span id="requirements" class="section"> &nbsp; </span>Medal
 
                             requirements</h1>
 
                             requirements</h1>
                        <div class="ui segment">
+
                             <table class="ui collapsing unstackable celled table" style="box-shadow: 0 1px 2px 0 rgba(34,36,38,.15)">
                             <table class="ui collapsing unstackable celled table">
+
 
                                 <thead class="full-width">
 
                                 <thead class="full-width">
 
                                 <tr class="center aligned">
 
                                 <tr class="center aligned">
Line 399: Line 398:
 
                                 <tr>
 
                                 <tr>
 
                                     <td>Deliverables</td>
 
                                     <td>Deliverables</td>
                                     <td>Register for iGEM.</td>
+
                                     <td>Meet all deliverables on the Requirements page.</td>
                                     <td>We have successfully registered.</td>
+
                                     <td>We met all the listed deliverables.</td>
 
                                     <td><i class="large green checkmark icon"></i></td>
 
                                     <td><i class="large green checkmark icon"></i></td>
 
                                 </tr>
 
                                 </tr>
Line 450: Line 449:
 
                                     <td>During our project we had several skype meetings with other iGEM teams. We also
 
                                     <td>During our project we had several skype meetings with other iGEM teams. We also
 
                                         provided iGEM Team biotINK
 
                                         provided iGEM Team biotINK
                                         from Munich with BBa_K782063 created by team Slovenia 2012..
+
                                         from Munich with <a href="http://parts.igem.org/Part:BBa_K782063">BBa_K782063
 +
                                            created by team Slovenia 2012.</a>
 
                                     </td>
 
                                     </td>
 
                                     <td><i class="large green checkmark icon"></i></td>
 
                                     <td><i class="large green checkmark icon"></i></td>
Line 497: Line 497:
 
                                     </td>
 
                                     </td>
 
                                     <td>We <a href="https://2016.igem.org/Team:Slovenia/Parts">improved</a> the parts
 
                                     <td>We <a href="https://2016.igem.org/Team:Slovenia/Parts">improved</a> the parts
                                         BBa_K1965003 and BBa_K1965030
+
                                         <a href="http://parts.igem.org/Part:BBa_K1965003">BBa_K1965003</a> and <a
 +
                                                href="http://parts.igem.org/Part:BBa_K1965030">BBa_K1965030</a>
 
                                         by equipping them with additional tags, expressing them
 
                                         by equipping them with additional tags, expressing them
 
                                         in human cells and further characterizing their function.
 
                                         in human cells and further characterizing their function.
Line 526: Line 527:
 
                                 </tbody>
 
                                 </tbody>
 
                             </table>
 
                             </table>
                        </div>
 
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>

Revision as of 21:15, 17 October 2016

Home

  Sonicell

Project Sonicell introduces exciting foundational advances to synthetic biology aimed to enable rapid cellular response to a combination of external stimuli such as sound, light or chemical compounds. This system is composed of a module for enhanced sensitivity of cells to ultrasound or other mechanical stimuli sensed by a calcium-dependent reporter, and a module for integration of a combination of several input signals into a signaling pathway based on the collection of orthogonal proteases. Finally, the proteases were designed to cleave an endoplasmic reticulum retention signal from target proteins, which results in a secretion of premade proteins.

project scheme module1 module1 module1 module1

 Abstract for experts

Synthetic biology opens exciting perspectives to control cells, for applications ranging from industrial processes to cell-based therapy. However, the large majority of designed cellular circuits are based on the transcriptional regulation, which may be too slow for many therapeutic or diagnostic applications, for example delivery of insulin or detection of a metabolite. Several medical doctors and researchers that we consulted stressed that a fast but controllable response is high on their wish list of expectations from synthetic biology. Additionally, noninvasive stimulation of selected tissues in the organism would also be highly desirable. While light is extremely useful as a rapid, spatially-restricted input signal, it cannot penetrate deep into the tissue. On the other hand, ultrasound combines several advantages of light with the added ability to penetrate tissue.

In our project we enhanced the sensitivity of mammalian cells to ultrasound or other mechanical stimulus by introduction of bacterial or engineered mammalian mechanosensors. Additionally, the response to ultrasound and touch was strongly increased by expression of the two components of bacterial gas vesicles, GvpA and GvpC. Mechanosensing was detected by the calcium-induced calmodulin-M13 complex reconstituting split cyclic luciferase, highly applicable for the emerging field of mechanogenetics. This enabled us to draw on cells using touch, where we engaged in collaboration with an artist.

For the rapid response of cells to multiple stimuli we designed proteolysis-based signaling pathways. For this purpose four orthogonal split proteases were generated, each recognizing its own motif of seven amino acid residues. Based on cleavage of coiled-coil dimerizing domains we demonstrated the ability to implement proteolysis-based signal pathways and logic functions in mammalian cells. Based on the cleavage of an ER retention peptide by a protease, input signals lead to protein secretion without the slow step of induced protein synthesis.

We believe that this project introduced several foundational advances that could be very useful to synthetic biology far beyond iGEM and for the benefit of humanity for therapy, diagnostics and potentially many other advanced applications.

 Abstract in plain English

Synthetic biology aims to control cells so they can obey our commands and do what we want, for example to produce drugs when needed. In our project we made cells respond to ultrasound or touch. When we touch the cells they light up, which can be recorded on a camera. Ideally we want cells to respond to our commands as fast as possible, because sometimes we can’t wait an hour before the cells produce the medicine and release it. That is why we gave cells a novel mechanism of processing information. We achieved this by combining several enzymes that recognize very specific parts of proteins and cut them, which changes their function. This allowed us to combine different signals, like sound, touch, light or chemicals, to obtain the desired cell response. The new enzymes can also cut the anchor with which medicines are attached to cells after the cells make them. Among many possible uses of our inventions, we can imagine activating cells in the brain by ultrasound, which means that we don’t need to use surgery to help people with Parkinson’s disease, or can trigger fast production of insulin in the body, to help people with diabetes.

  Achievements

newAtiGEM new at science

newAtiGEM new at iGEM

  • Mammalian cell sensitivity to ultrasound and mechanical stimuli was increased by ectopic expression of bacterial or human cation permeable channels and functional reconstitution of bacterial protein gas vesicles from two protein components (GvpA and GvpC) newAtiGEM
  • A custom-made ultrasound generator device was used to stimulate mammalian cells newAtiGEM
  • A mechano-sensory luciferase reporter sensitive to an influx of free calcium ions was introduced into mammalian cells, which enabled rapid light emission of mammalian cells in response to mechanical stimuli and enabled painting on cells by touch with exciting potentials for other applications newAtiGEM
  • A circular proteolysis-activated luciferase reporter was experimentally verified and introduced into the iGEM collection newAtiGEM
  • A set of four different orthogonal site-specific proteases was designed and tested as split proteins in mammalian cells newAtiGEM
  • New orthogonal protease-based signaling pathways and information processing platform was designed and several logic functions based on the combination of multiple input signals were tested experimentally newAtiGEM
  • Proteolysis of the ER retention signal was introduced as the trigger for the fast release of proteins from cells aimed to enable fast therapeutic responses such as required for the release of peptide hormones, neuroactive peptides etc. newAtiGEM

  Medal requirements

Medal Explanation Criteria
BRONZE
Register and attend Register for iGEM. We have successfully registered.
Deliverables Meet all deliverables on the Requirements page. We met all the listed deliverables.
Attribution Create a page on your team wiki with clear attribution of each aspect of your project. We created a wiki page describing the attributions to the project.
Part / Contribution Document at least one new standard BioBrick Part or Device central to your project and submit this part to the iGEM Registry. We documented and submitted 45 standard BioBrick parts.
SILVER
Validated Part / Validated Contribution Experimentally validate that at least one new BioBrick Part or Device of your own design and construction works as expected. We demonstrated the functionality of our constructs and provided experimental data. We created a list of our favorite parts and detailed our experiences with them.
Collaboration Convince the judges you have helped any registered iGEM team from high school, a different track, another university, or another institution in a significant way. During our project we had several skype meetings with other iGEM teams. We also provided iGEM Team biotINK from Munich with BBa_K782063 created by team Slovenia 2012.
Human Practices Demonstrate how your team has identified, investigated, and addressed one or more of issues (education, public engagement, public policy issues, public perception, or other activities) in the context of your project. Education and transmission of interest in science is an important part of our project. This is why we prepared several lectures for high school students and also collaborated with an artist who gave our project a new perspective by conveying science to public through art.
GOLD
Integrated Human Practices Expand on your silver medal activity by demonstrating how you have integrated the investigated issues into the design and/or execution of your project. Implementation of several experts from different medical fields and culturologists helped us improve our project.
Improve a previous part or project Improve the function OR characterization of an existing BioBrick Part or Device and enter this information in the Registry. We improved the parts BBa_K1965003 and BBa_K1965030 by equipping them with additional tags, expressing them in human cells and further characterizing their function.
Proof of concept Demonstrate a functional proof of concept of your project.  We successfully demonstrated the functionality of selected (split) proteases and used them to control secretion of the reporter protein from the cell.
Demonstrate your work How your project works under real-world conditions. We showed that our mechanosensing constructs coexpressed in human cells allow for a controlled response to touch and used them for our art application, Touch painting.