Difference between revisions of "Team:British Columbia/Project/S-Layer"

m (Blanked the page)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{British_Columbia_2}}
 
<html lang="en">
 
<head>
 
    <title>S-Layer</title>
 
    <style>
 
        .cover{
 
            background: url("https://static.igem.org/mediawiki/2016/6/60/T--British_Columbia--header-mountains.jpg");
 
            background-size: cover; background-repeat: no-repeat;
 
        }
 
  
        body {
 
            position: relative;
 
        }
 
        .affix {
 
            top: 70px;
 
            position: fixed;
 
        }
 
 
        @media screen and (min-width: 768px) {
 
            .cover{
 
                background: linear-gradient(to bottom, rgba(0, 0, 0, 0.35) 0%, rgba(0, 0, 0, 0.15) 50%, rgba(0, 0, 0, 0) 100%),  url("https://static.igem.org/mediawiki/2016/6/60/T--British_Columbia--header-mountains.jpg");
 
                background-size: cover; background-repeat: no-repeat;
 
                background-position: 0 0, 0 -220px;
 
            }
 
        }
 
 
        #previous img{
 
            width: 100%; min-width: 100%; height: auto;
 
            top: -250px;
 
            transition: all 1s ease;
 
        }
 
 
        #next img{
 
            width: 100%; min-width: 100%; height: auto;
 
            top: -250px;
 
            transition: all 1s ease;
 
        }
 
 
    </style>
 
</head>
 
<body>
 
<div class="cover">
 
    <div class="container-fluid">
 
        <div class="row" id="title">
 
            <div class="col-sm-12">
 
                <strong><p style="font-size: 3em">S-Layer Engineering</p></strong>
 
            </div>
 
        </div><!--title-->
 
    </div><!--container-fluid-->
 
</div><!--cover-->
 
 
<div id="breadcrumbs">
 
    <strong>
 
        <a href="">Home</a> / <a href="">Project</a> / <a href="">S-Layer Engineering</a></strong>
 
</div><!--#breadcrumbs-->
 
 
<body data-spy="scroll" data-target="#myScrollspy" data-offset="20">
 
<!--the scrollable area-->
 
 
<div class="content-wrap">
 
 
    <!-- The navbar - The <a> elements are used to jump to a section in the scrollable area -->
 
    <div class="container">
 
        <div class="row">
 
            <nav class="col-sm-3" id="myScrollspy">
 
                <ul class="nav nav-pills nav-stacked" data-spy="affix" data-offset-top="20">
 
                    <li class="active"><a href="#Abstract">Abstract</a></li>
 
                    <li><a href="#Key Acheivements">Key Achievements</a></li>
 
                    <li><a href="#Introduction">Introduction</a></li>
 
                    <li><a href="#Design">Design</a></li>
 
                    <li><a href="#Methods">Methods</a></li>
 
                    <li><a href="#Results">Results</a></li>
 
                    <li><a href="#Conclusion">Conclusion</a></li>
 
                    <li><a href="#References">References</a></li>
 
                </ul>
 
            </nav>
 
 
            <!-- maybe need a div for the navigator -->
 
 
            <div class="col-sm-9">
 
                <div id="Abstract">
 
                    <h2>Abstract</h2>
 
                    <p>Lignocellulosic biomass, the most abundant renewable resources in nature, represents a promising alternative to fossil fuels for sustainable production of chemicals and material. Most of the available lignocellulosic biomass is not a food source for humans and its industrial exploitation does not conflict with agricultural usage. However, the main technological obstacle for industrial exploitation of biomass is the recalcitrant nature of lignocellulosic polymers. One approach to harness the energy contained in biomass is to convert the lignocellulosic polymers in simple sugars, which can be further transformed in valuable compounds, using microorganisms. Some anaerobic microorganisms have developed approaches to break down recalcitrant plant biomass using elaborate extracellular enzyme complexes, containing a scaffolding protein with many attached cellulolytic enzymes. The assembly of such complexes requires engineering of highly specific cohesin-dockerin interactions.
 
                        Our approach focuses on adapting the surface layer of <i>Caulobacter crescentus</i> for the  for highly efficient display of cellulolytic enzymes. We specifically chose <i>C. crescentus</i> as it natively expresses a two dimensional crystal lattice protein called a surface layer (S-Layer), which can be engineered to work as an enzyme display. Our goals were to embed cellulolytic enzymes into the S-Layer protein to confirm their proper folding and activity. We believe that our approach will simplify the process of "cellulosome" engineering by exploiting the robust secretion and display system of <i>Caulobacter</i>. The developed platform can be easily adapted for the display of different enzymatic activities.
 
                    </p>
 
                </div>
 
 
                <div id="Key Acheivements">
 
                    <h2>Key Acheivements</h2>
 
                    <ul style="font-size: 15px">
 
                        <li>Cloned 5 different cellulase constructs, such as β-1,4-endoglucanase (Endo5A), β-1,4-glucosidase (Gluc1C), β-1,4-exoglucanase (CEX) and 2 versions of  β-1,4-endoglucanase(E1) in p4A723 plasmid containing rsaA protein and transformed into <i>C. crescentus</i> for the display on cell surface.</li>
 
                        <li>Cloned 4 different cellulases - Endo5A, Gluc1C, E1, G12 into pSB1C3 and submitted as parts BBa…… </li>
 
                        <li>Confirmed surface protein (rsaA)-cellulase fusion proteins expression of  Endo5A, Gluc1C, E1_422, E1_399 constructs</li>
 
                        <li>Confirmed cellulase activity of Endo5A, Gluc1C, E1_422, E1_399 cellulase constructs expressed on the surface of <i>C. crescentus</i></li>
 
                        <li> Confirmed baseline intracellular cellulase activity of 4 different cellulase constructs expressed in <i>E. coli</i>: Endo5A, Gluc1C, E1, Gluc1C</li>
 
                        <li>Codon-optimized β-1,4-endoglucanase (cenA) derived from Registry for expression in <i>Caulobacter</i>. Confirmed its expression and cellulase activity on the surface of <i>Caulobacter</i></li>
 
                    </ul>
 
                </div>
 
 
                <div id="Introduction">
 
                    <h2>Introduction</h2>
 
                    <p>Plant biomass is the most abundant renewable resource on Earth. Usually plant biomass consists of 30-50% of cellulose, 20-40% hemicellulose carbohydrates and 20-35% lignin heteropolymer, which are integrated in each other to form complex carbohydrate  structures recalcitrant to degradation. Cellulose represents a linear polymer of glucose molecules connected through β-1,4 glycoside bonds. In nature the degradation of cellulose into soluble sugars often involves several different enzymes, such as exoglucanases, endoglucanases and β-glucosidases, that act in synergy to cleave the bonds.
 
                        <br>
 
                        We propose to express a mixture of cellulase-degrading enzymes on the surface of the bacteria <i>Caulobacter crescentus</i>,which will work in synergy to increase the rate of degradation and yield of monosaccharides release.
 
                    </p>
 
                    <p style="text-align:center">
 
                        <img src="https://static.igem.org/mediawiki/2016/3/3e/T--British_Columbia--Cellulose.png" style="width:500px">
 
                    </p>
 
                    <p><b>Figure 1</b> Cellulose β(1→4) linked D-glucose polysaccharide.</p>
 
                    <p>Caulobacter crescentus is a gram negative non-pathogenic bacterium found in many freshwater and
 
                        soil environments. It displays, on its outer surface, a crystalline protein lattice called a
 
                        surface layer (S-layer) which is made of multiple repetitions of the same RsaA protein encasing
 
                        the whole surface of the cell. </p>
 
                    <p style="text-align:center">
 
                        <img src="https://static.igem.org/mediawiki/2016/d/df/T--British_Columbia--S-Layer.png" style="width:700px">
 
                    </p>
 
                    <p><b>Figure 2</b> (left) <i>Caulobacter crescentus</i> top veiw of rsaA surface layer protein hexagonal arrangement
 
                        (right) gram negative cell wall structure with surface layer.</p>
 
                    <p>For our project we have used the RsaA fusion protein secretion system designed by the Smit lab at the University of British Columbia. Using the ΔGCSS strain of <i>C.crescentus</i> which has its own wild type RsaA protein knock-out in the host genome, we have aimed to insert genetically engineered RsaA fusion protein plasmids to express functional cellulase enzymes fused into the surface layer protein. The use of fusion proteins expressed on the surface of the cell would allow for the breakdown of cellulase without any diffusion of the substrate in and out of the cell.
 
                    </p>
 
 
                </div>
 
 
                <div id="Design">
 
                    <h2>Design</h2>
 
                    <p>WE MUST ADD THIS SECTION :)</p>
 
                </div>
 
 
                <div id="Methods">
 
                    <h2>Methods</h2>
 
                    <p>
 
                        All Caulobacter cultures were grown in PYE media supplemented with 2 μg/ml chloramphenicol unless
 
                        stated otherwise. All plasmid DNA extractions were performed with QIAprep Spin Miniprep Kit
 
                        (Qiagen). DNA purification from gels or PCR mixtures were done with NucleoSpin® Gel and PCR
 
                        Clean-up kit(Macherey-Nagel).</p>
 
                    <h3>Cloning of cellulase enzymes into rsaA plasmid in <i>C. crescentus</i></h3>
 
                    <p>The synthesized cellulase DNA was amplified using PCR with HF Phusion polymerase in 100 μl reactions.The following primers were used to amplify the selected region of cellulases genes and to add the BglII and PstI or NheI cut sites for cloning in p4A_723 plasmid:</p>
 
                    <table style="width:50%; max-width: 50vw">
 
                        <tr>
 
                            <td>Endo5A</td>
 
                            <td>Endo5a_fwd</td>
 
                            <td>5’-TCCAGATCTAGCGTCAAGGGGTATTACCAC</td>
 
                        </tr>
 
                        <tr>
 
                            <td>Endo5A</td>
 
                            <td>Endo5A_rev </td>
 
                            <td>5’-TCCATCTGCAGACACCGGCTTCATGATCCG </td>
 
                        </tr>
 
                        <tr>
 
                            <td>Gluc1C</td>
 
                            <td>Gluc1C_fwd </td>
 
                            <td>5’-TCCAGATCTAACACGTTCATCTTTCCGGC</td>
 
                        </tr><tr>
 
                        <td>Gluc1C</td>
 
                        <td>Gluc1C_rev </td>
 
                        <td>5’-TCCATCTGCAGAGAACCCGTTCTTGGCCAT</td>
 
                    </tr>
 
                        <tr>
 
                            <td>E1_399</td>
 
                            <td>E1_399_fwd </td>
 
                            <td>5’-TCCAGATCTGTTGCAGGCGGGGGTTATTG </td>
 
                        </tr>
 
                        <tr>
 
                            <td>E1_399</td>
 
                            <td> E1_399_rev </td>
 
                            <td>5’-TCCATCTGCAGAAACCGGGTCAAATATCGATGATTTTATC </td>
 
                        </tr>
 
                        <tr>
 
                            <td>E1_422</td>
 
                            <td>E1_422_fwd </td>
 
                            <td>5’-TCCAGATCTGTTGCAGGCGGGGGTTATTG </td>
 
                        </tr>
 
                        </tr><tr>
 
                        <td>E1_422</td>
 
                        <td>E1_422_rev </td>
 
                        <td>5’-TCCATCTGCAGATGAGGGGGAGGGAGAC</td>
 
                    </tr>
 
                        <tr>
 
                            <td>G12</td>
 
                            <td>G12_fwd</td>
 
                            <td>5’-TCCAGATCTGCGACGACCTCCACG</td>
 
                        </tr>
 
                        <tr>
 
                            <td>G12</td>
 
                            <td>G12_rev</td>
 
                            <td>5’-TCCATCTGCAGATGAGGGGGTGGGAGTAG</td>
 
                        </tr>
 
                        <tr>
 
                            <td>CEX</td>
 
                            <td>CEX_fwd</td>
 
                            <td>5’-GGGAGATCTGCGACCACGCTCAAGGAGGCCGCC</td>
 
                        </tr>
 
                        <tr>
 
                            <td>CEX</td>
 
                            <td>CEX_Rev</td>
 
                            <td>5’-CTAGCTAGCCCCGGCCGGACCGGACGTCGG</td>
 
                        </tr>
 
 
                    </table>
 
                    <p><b>Table 1</b> Primers for cellulase gene inserts into rsaA P4A723 plasmid.</p>
 
 
                    <p>For the cloning of Endo5A, GlucIC, G12, E1_422 and E1_399 in P4A723 rsaA plasmid, the amplified
 
                        products and the isolated p4A723 plasmid DNA were digested with BglII and PstI restriction enzymes
 
                        (NEB). For the cloning of CEX construct, the plasmid and amplified product were digested with BglII
 
                        and NheI restriction enzymes. The plasmid digests were purified by agarose gel purification, while
 
                        PCR product digests were purified by PCR purification. Purified digests were ligated using T4 ligase(NEB)
 
                        and the ligation mixes were then transformed in chemically competent DH5α E. coli.
 
                    <br>
 
                        Transformed colonies were then plated on and selected from a LB-CM plate and grown overnight in
 
                        LB-CM media. Recombinant plasmid was then isolated and sent for Sanger sequencing for confirmation.
 
                    <br>
 
                        After sequence confirmation, the isolated construct DNA were electroporated into electrocompetent
 
                        <i>C.crescentus</i> and colonies were grown on a PYE-CM plate. One colony was selected and streaked
 
                        onto a fresh plate, which would be used for all future assays.</p>
 
 
 
                    <h3>
 
                        Cloning of cellulase enzymes into pSB1C3 plasmid with Ptac promoter and rbs
 
                    </h3>
 
                    <p>
 
                        The synthesized cellulases genes were amplified using PCR with HF Phusion polymerase in 100 μl reactions.
 
                        The following primers were used to amplify the selected region of cellulases genes and to add BioBrick
 
                        Prefix and Suffix:</p>
 
                    <table>
 
                        <table style="width:50%; max-width: 50vw">
 
                            <tr>
 
                                <td>Endo5A</td>
 
                                <td>Endo5A_fwd</td>
 
                                <td>5'-TCCGAATTCGCGGCCGCTTCTAGATGAAGAAGAAGGGC</td>
 
                            </tr>
 
                            <tr>
 
                                <td>Endo5A</td>
 
                                <td>Endo5A_rev </td>
 
                                <td>5'-TCCTACTAGTAGCGGCCGCTGCAGCTACTCCGCGGAGG</td>
 
                            </tr>
 
                            <tr>
 
                                <td>Gluc1C</td>
 
                                <td>Gluc1C_fwd </td>
 
                                <td>5'-TCCGAATTCGCGGCCGCTTCTAGATGAGCGAGAACACG</td>
 
                            </tr><tr>
 
                            <td>Gluc1C</td>
 
                            <td>Gluc1C_rev </td>
 
                            <td>5'-TCCTACTAGTAGCGGCCGCTGCAGTTAGAACCCGTTCTTG</td>
 
                        </tr>
 
                            <tr>
 
                                <td>E1</td>
 
                                <td>E1_fwd</td>
 
                                <td>5'-TCCGAATTCGCGGCCGCTTCTAGATGCCTCGCGCTCT</td>
 
                            </tr>
 
                            <tr>
 
                                <td>E1</td>
 
                                <td>E1_rev</td>
 
                                <td>5'-TCCTACTAGTAGCGGCCGCTGCAGCTAGGTGGGAGTTGGG</td>
 
                            </tr>
 
                            <tr>
 
                                <td>G12</td>
 
                                <td>G12_fwd</td>
 
                                <td>5'-TCCGAATTCGCGGCCGCTTCTAGATGTTAGTGTTAAGAGCC</td>
 
                            </tr>
 
                            <tr>
 
                                <td>G12</td>
 
                                <td>G12_rev</td>
 
                                <td>5'-TCCTACTAGTAGCGGCCGCTGCAGCTACGACGAAGTAGG</td>
 
                            </tr>
 
 
                    </table>
 
                        <p><b>Table 2</b> Primers for cellulase gene inserts into psb1c3 biobricking plasmid.</p>
 
 
                    <p>
 
                        Purified pSB1C3  plasmid and the amplified Endo5A, Gluc1C, E1, G12 constructs were digested with
 
                        EcoRI  and SpeI restriction enzymes. The plasmid digests were purified by agarose gel purification,
 
                        while PCR product digests were purified by PCR purification. Purified digests were ligated using T4
 
                        ligase and the ligation mixes were then transformed in chemically competent DH5α <i>E. coli</i>.
 
                        Transformed colonies were then plated on LB-CM plate and the isolated colonies were selected and grown
 
                        overnight in LB-CM media. Recombinant plasmid was isolated and sent for Sanger sequencing for confirmation.
 
                    <br>
 
                        pTAC was amplified from Bba_K868400 part using HF phusion PCR with the following primers to add the rbs (part Bba_B0034):
 
 
                        Ptac_rbs_F  5'-GTTTCTTCGAATTCGCGGCCGCTTCTAGAgagctgttgacaatta, Ptac_rbs_R 5'-GTTTCTTCCTGCAGCGGCCGCTACTAGT tttctcctcttt aattgttatccgctca
 
                    <br>
 
                        The amplified pTAC and rbs part was then digested with EcoRI and SpeI restriction enzymes.
 
                        pSB1C3 high copy assembly plasmid with the gene insert was digested using EcoRI and XbaI restriction enzymes.
 
                        The plasmid digest was then purified by agarose gel purification while the pTAC RBS digest was purified by PCR
 
                        purificationt. Both purified digest were ligated together using standard ligation protocol and ligation mix
 
                        was then transformed in chemically competent dh5a E.coli.
 
                    </p>
 
 
                    <h3>Surface layer fusion protein extraction</h3>
 
                    <p>
 
                        10 mL tubes of PYE-CM were inoculated with the different C. crescentus strains carrying the different
 
                        cellulase-rsaA fusions in p4A723 plasmid as well as a positive control carrying a plasmid with wild
 
                        type rsaA (P4A723) and a negative control of rsaA knock-out (ΔGCSS). Cultures were grown overnight at
 
                        30°C shaking. Cultures were taken out of incubator and optical density at 600 nm was measured. All
 
                        cultures were then normalized to the lowest OD by diluting the remaining culture with PYE.
 
                        <br>Low pH extraction (Walker et al. 1992) was performed using different pHs of HEPES buffer to
 
                        extract only crystalline s-layer without lysing the cells. Proteins were then stored in eppendorf tubes at -20°C.
 
                        Remaining cell pellet was used to prepared a cell lysate by resuspending the pellet in 150 ul of
 
                        lysis buffer and boiling for 5 minutes.
 
                    </p>
 
 
                        <p style="text-align:center">
 
                            <img src="https://static.igem.org/mediawiki/2016/c/cf/T--British_Columbia--lowPH.png" style="width:700px">
 
                        </p>
 
                        <p><b>Figure 3</b> products of low pH extraction procedure.</p>
 
 
                    <h3> Surface layer fusion protein expression confirmation </h3>
 
                    <p>To confirm expression of surface layer fusion protein SDS-PAGE and western blot analysis were
 
                        performed on proteins from low pH extraction and on the cell lysates from those samples.
 
                        SDS-PAGE was done using 8% separating gels. Coomassie Brilliant Blue staining and western
 
                        immunoblotting was performed using protocols outlined in protocol section. Western blots were
 
                        probed with primary rabbit anti-RsaA polyclonal antibodies at 1/30,000 dilution. Goat anti-rabbit
 
                        IgG was used as secondary antibody at 1/50,000 dilution.
 
                        Fluorophore was detected by Odyssey Infrared Imaging System.</p>
 
 
                    <h3>Caulobacter Cellulase Activity Analysis</h3>
 
                    <p>
 
                        For cellulase enzyme activity measurement, triplicate 5mL PYE-CM starter cultures were grown
 
                        in 10 mL tubes on a rotary shaker at 30°C for 2 days. Cultures were taken out of incubator and
 
                        OD600 was measured. All cultures were then normalized to the lowest OD 600 nm by diluting the
 
                        remaining culture with PYE. 1 mL of each sample was removed and resuspended with fresh PYE and
 
                        spin down 3 times to remove any lysed cells that may interfere with cellulase activity results. </p>
 
 
                    <p>
 
                        A protocol for cellulases activity assay was adopted from “A high throughput screen for biomining
 
                        cellulase activity from metagenomic libraries”. 150 uL of each culture were aliquoted into a clear
 
                        96 well plate(Corning) then 150 uL assay mix (0.1 mg/ml DNPC in 50 mM pH 5.5 potassium acetate buffer)
 
                        was added to the each well. OD 400 nm and OD 600 nm was measured every 30 minutes for several hours by
 
                        a plate reader. Between measurements the culture was incubating at 30°C.  Data was normalized further
 
                        by dividing the OD400nm measurement by the OD600nm measurement. </p>
 
 
                    <p>
 
                        OD 400 nm was measured every 30 minutes for 5 hours by an XX plate reader. Between measurements the culture was incubating at 30°C. </p>
 
 
                    <h3>
 
                        Growth of Caulobacter displaying cellulases on cellulose as a sole carbon source
 
                        <p>
 
                            Triplicate 5mL PYE-CM starter cultures of p4A723, E1_399, E1_422, Gluc1C and Endo5A were grown
 
                            in 10 mL tubes on a rotary shaker at 30°C for 2 days. Cultures were taken out of incubator and
 
                            OD600 was measured. All cultures were then normalized to the lowest OD600 by diluting the remaining
 
                            culture with PYE. 100-fold dilution was used to inoculate the cultures in 200 uL well clear plate
 
                            containing M2 with 0.2% w/v carboxymethylcellulose. For the co-cultures, equal-volume inoculations
 
                            were performed to make final dilution of 100. The plate was incubate at 30C in a Tecan platereader
 
                            and OD600 was read every 30 minutes.
 
                    </h3>
 
                </div>
 
 
                <div id="Results">
 
                    <h2>Results</h2>
 
                    <h3>Cloning of cellulase enzymes into rsaA plasmid in <i>C.crescentus</i></h3>
 
                    <p>
 
                        Endo5A, Gluc1C, E1_422, and E1_399 were all successfully cloned into the p4A723 plasmid vector and
 
                        sequence confirmed by Sanger sequencing. Cloning was attempted on G12 several times, each time the
 
                        transformation step into  DH5α E.coli failed, leading to the assumption that the gene product might
 
                        be toxic to the cell. As Endo5A, E1_422, and E1_399 are all endoglucanases, we decided to not proceed
 
                        with any troubleshooting on G12. CEX gene was successfully cloned into DH5α E.coli and sequence confirmed.
 
                        However after transforming the plasmid into caulobacter, extreme cell clumping was observed, possibly a
 
                        result of the CEX fusion into the S-Layer.
 
                    </p>
 
                    <p style="text-align:center">
 
                        <img src="https://static.igem.org/mediawiki/2016/6/6a/T--British_Columbia--plasmid_map.jpg" style="width:400px">
 
                    </p>
 
                    <p><b>Figure 4</b> rsaA p4a723 plasmid.</p>
 
 
                    <h3>Surface layer fusion protein extraction expression confirmation</h3>
 
                    <p>Low pH extraction was done on Endo5A, Gluc1C, E1_399, and E1_422 RsaA fusion proteins as well as
 
                        P4A732 RsaA positive control and ΔGCSS negative control. We also prepared a cell lysate from the
 
                        remaining cell pellet to compare the amount of protein within the cell as opposed to on the surface
 
                        of the cell. We ran two gels simultaneously staining one with Coomassie Brilliant blue and performing
 
                        western blot on the other.
 
                        <br>
 
                        Thermo fisher prestained protein ladder was used to compare relative expected sizes of fusion proteins. Expected protein sizes were as followed: </p>
 
 
                    <table style="width:25%; max-width: 50vw">
 
                        <tr>
 
                            <th>Protein </hd>
 
                            <th>Size</th>
 
                        </tr>
 
                        <tr>
 
                            <td>RsaA</td>
 
                            <td>98 kDaltons</td>
 
                        </tr>
 
                        <tr>
 
                            <td>Endo5A-RsaA fusion</td>
 
                            <td>138 kDaltons</td>
 
                        </tr>
 
                        <tr>
 
                            <td>Gluc1C-RsaA fusion</td>
 
                            <td>149 kDaltons</td>
 
                        </tr>
 
                        <tr>
 
                            <td>E1_399-RsaA fusion</td>
 
                            <td>138 kDaltons</td>
 
                        </tr>
 
                        <tr>
 
                            <td>E1_422-RsaA fusion</td>
 
                            <td>140 kDaltons</td>
 
                        </tr>
 
 
                    </table>
 
                    <p>On the coomassie stained gel faint bands corresponding to cellulases-rsaA fusionswere observed  in
 
                        low PH extracted proteins. The cell lysate showed large amounts of intracellular proteins with poor
 
                        differentiation so no conclusions could be made from these. <br>
 
                        On the western blot analysis, RsaA fusion proteins were clearly observed at higher molecular
 
                        weight than wild type RsaA. Nothing was displayed on the negative control showing that no wild
 
                        type RsaA was produced. The cell lysate results were comparable to the low pH extracted proteins,
 
                        with visibly more RsaA fusion proteins detectable in the cell lysate as opposed to the low pH
 
                        extracted proteins. This may be a sign that not all of the fusion protein can get out of the
 
                        cell and crystalize, likely due to the large size of the fusion protein. The higher visibility
 
                        of some constructs over others in the low pH extraction, such as with E1_399 vs. Gluc1C, is
 
                        indicative of higher expression and secretion outside of the cell. The smaller constructs such
 
                        as E1_399 and Endo5A were seen more clearly on both the coomassie stained gel and the western blot,
 
                        indicating that the smaller constructs might be easier to transport on the surface.
 
 
                        Some fragments of lower molecular weight RsaA protein in the western, this is probably due to cleavage of the RsaA protein during the extraction.
 
                    </p>
 
                    <p style="text-align:center">
 
                        <img src="https://static.igem.org/mediawiki/2016/8/89/T--British_Columbia--Gels.png" style="width:700px">
 
                        </p>
 
                        <p>
 
                        <b>Figure 5</b> (top) Western Blot. Left to right Thermofisher ladder, Gluc1C cell lysate, Endo5A cell lysate,
 
                        E1_399 cell lysate, E1_422 cell lysate, ΔGCSS cell lysate, P4A723 cell lysate, Thermofisher ladder,
 
                        Gluc1C low pH extracted proteins, Endo5A low pH extracted proteins, E1_399 low pH extracted proteins,
 
                        E1_422 low pH extracted proteins, ΔGCSS low pH extracted proteins, P4A723 low pH extracted proteins
 
                        <br>
 
                        <b>Figure 6</b> (bottom) Coomassie Brilliant Blue Stain. Left to right: Thermofisher ladder, Gluc1C cell lysate,
 
                        Endo5A cell lysate, E1_399 cell lysate, E1_422 cell lysate, ΔGCSS cell lysate, P4A723 cell lysate,
 
                        Thermofisher ladder, Gluc1C low pH extracted proteins, Endo5A low pH extracted proteins,
 
                        E1_399 low pH extracted proteins, E1_422 low pH extracted proteins, ΔGCSS low pH extracted proteins,
 
                        P4A723 low pH extracted proteins
 
 
                    </p>
 
                    <h3><i>Caulobacter</i> cellulase activity analysis</h3>
 
                    <p>
 
                        An initial cellulase activity analysis was run using the above protocols for a period of 150 minutes. The assay mechanisms is explained in Fig. X. 2,4dinitrophenylcellobiose consists of cellobiose bound to chromophore. If cellulase activity is present, the release of chromophore can be observed and measured at OD400</p>
 
                    </p>
 
                    <p style="text-align:center">
 
                        <img src="https://static.igem.org/mediawiki/2016/4/45/British_Columbia_assay.png" style="width:700px">
 
                    </p>
 
                    <p><b>Figure 7</b> DNP cellubiose substrate for cellulase activity assay.</p>
 
 
                    <p>
 
                        This assay was run on the <i>Caulobacter</i> cells expressing Endo5A, Gluc1C, E1_399, and E1_422 RsaA fusions using the wild type RsaA P4A723 protein as a control. From the first time point, cellulase-expressing <i>Caulobacters</i> demonstrated high cellulase activities, with E1_422 and E1_399 having the highest activity level followed by Endo5A (Figure 8). Gluc1C had lower activity levels closer to that of the control, what can be explained by the glucosidase activity of Gluc1C. The enzyme cleaves a glucose molecule from DNPC first, not cellobiose what does not lead to the release of chromophore. Observation at later time points need to be taken to confirm the Gluc1C activity.
 
                    </p>
 
                    <p style="text-align:center">
 
                        <img src="https://static.igem.org/mediawiki/2016/6/6a/British_Columbia_cellulasese_assay.png" style="width:600px">
 
                    </p>
 
                    <p><b>Figure 8</b> Cellulase activity assay results</p>
 
                </div>
 
 
                <div id="Conclusion">
 
                    <h2>Conclusion</h2>
 
                    <p>Need to add this</p>
 
                </div>
 
 
                <div id="References">
 
                    <h2>References</h2>
 
                    <p>Need to add this</p>
 
                </div>
 
 
            </div><!--.content-wrap-->
 
 
            <p id="read-more"><strong>Check out other parts of our project below!</strong></p>
 
            <div id="up-next">
 
                <div class="row" style="max-width: 100%; margin: 0">
 
                    <div class="col-sm-6" id="previous">
 
                        <a href="https://2016.igem.org/Team:British_Columbia/Project/Modelling">
 
                            <img src="https://static.igem.org/mediawiki/2016/8/80/T--British_Columbia--header-fog.JPG"></a>
 
                        <a href="https://2016.igem.org/Team:British_Columbia/Project/Modelling">
 
                            <strong><figcaption>Modelling</figcaption></strong></a>
 
                    </div>
 
                    <div class="col-sm-6" id="next">
 
                        <a href="https://2016.igem.org/Team:British_Columbia/Project/Human_Practices">
 
                            <img src="https://static.igem.org/mediawiki/2016/8/8e/T--British_Columbia--header-fog-far-away.JPG"></a>
 
                        <a href="https://2016.igem.org/Team:British_Columbia/Project/Human_Practices">
 
                            <strong><figcaption>Human Practices</figcaption></strong></a></div>
 
                </div>
 
</body>
 
</html>
 

Latest revision as of 09:36, 19 October 2016