Difference between revisions of "Team:Kent"

 
(29 intermediate revisions by 2 users not shown)
Line 53: Line 53:
 
color:black !important;
 
color:black !important;
 
line-height: 150%;
 
line-height: 150%;
 +
}
 +
 +
.contact {
 +
width:45px;
 +
height:45px;
 +
border:0;
 +
}
 +
 +
.sponsors img {
 +
width: 80%;
 +
display: block;
 +
margin: auto;
 
}
 
}
  
Line 64: Line 76:
  
 
<div class="bacteria_paragraph">
 
<div class="bacteria_paragraph">
     Bacteria such as <i>Magnetospirillum gryphiswaldense</i> grow magnetite nano-crystals that they use for orientation.
+
     Bacteria such as <i>Magnetospirillum gryphiswaldense</i> grow magnetite nanoparticles that they use for orientation.
 
</div>
 
</div>
  
Line 74: Line 86:
 
<div class="after_bacteria_text">
 
<div class="after_bacteria_text">
 
These magnetic nanoparticles are grown from iron inside of organelle-like structures called magnetosomes.
 
These magnetic nanoparticles are grown from iron inside of organelle-like structures called magnetosomes.
In this project, we will produce magnetite nanoparticles using a synthetic biology approach utilising enzymes involved in magnetosome formation. We will utilise proteins MamP, MamT and MamX, which were chosen due to their proposed involvement in promoting magnetite crystal maturation in <i>M. gryphiswaldense</i>. The proteins will also be purified and tested <i>in vitro</i>. </div>
+
In this project, we will use a synthetic biology approach to produce magnetite nanoparticles; utilising enzymes involved in magnetosome formation. We will utilise proteins MamP, MamT, MamO and MamX, which were chosen due to their proposed involvement in promoting magnetite crystal maturation in <i>M. gryphiswaldense</i>. The proteins will also be purified and tested <i>in vitro</i>. </div>
  
  
Line 81: Line 93:
 
<div class="after_ecoliGenes_text">
 
<div class="after_ecoliGenes_text">
  
Our results will further our understanding of how bacteria cells are able to form and organise magnetite nanoparticles in magnetosomes, and demonstrate how synthetic biology approach can be used to make nano-materials.
+
Our results will further our understanding of how bacterial cells are able to form and organise magnetite nanoparticles in magnetosomes. Futhermore, we will demonstrate how synthetic biological approaches can be used to make nano-materials.
 
<div>
 
<div>
  
Line 97: Line 109:
 
<br>
 
<br>
 
</br>
 
</br>
<a href="mailto:kentigem@outlook.com">
+
 
  <h5 style="color:#5A4565">Email us!</h5>
+
 
</a>
+
  <a href="mailto:kentigem@outlook.com">
 +
    <img src="https://static.igem.org/mediawiki/2016/a/aa/TeamKentEmail.png" alt="email" class="contact">
 +
  </a>
  
 
<a href="https://twitter.com/igemkent" target="_blank">
 
<a href="https://twitter.com/igemkent" target="_blank">
  <img src="https://static.igem.org/mediawiki/2016/f/fd/IgemKent-twitterLogo.png" alt="twitter" style="width:65px;height:65px;border:0;">
+
    <img src="https://static.igem.org/mediawiki/2016/6/6b/TeamKentTwitterLogo.png" alt="twitter" class="contact">
 
</a>  
 
</a>  
  
 
<a href="https://www.instagram.com/kent_igem2016/" target="_blank">
 
<a href="https://www.instagram.com/kent_igem2016/" target="_blank">
<img src="https://static.igem.org/mediawiki/2016/3/33/IgemKent-instagramLogo.jpeg" alt="instagram" style="width:65px;height:45px;border:0;">
+
    <img src="https://static.igem.org/mediawiki/2016/0/0b/TeamKentInstagramLogo.png" alt="instagram" class="contact">
</a>  
+
</a>
 +
 
 +
<a href="https://www.facebook.com/iGEM-Kent-2016-1814390815461916/" target="_blank">
 +
    <img src="https://static.igem.org/mediawiki/2016/8/83/TeamKentFbLogo.png" alt="facebook" class="contact">
 +
</a>
 +
 
 +
<hr style="height:1px; border:none; color:#000; background-color:#000;">
 +
 
 +
<div class="sponsors">
 +
    <img src="https://static.igem.org/mediawiki/2016/a/ab/TeamKentSponsorLogos.png">
 +
</div>
 +
 
  
 
</html>
 
</html>

Latest revision as of 23:49, 19 October 2016

Mag-nano-tite: Creating magnetite nanoparticles in E.coli


Bacteria such as Magnetospirillum gryphiswaldense grow magnetite nanoparticles that they use for orientation.
These magnetic nanoparticles are grown from iron inside of organelle-like structures called magnetosomes. In this project, we will use a synthetic biology approach to produce magnetite nanoparticles; utilising enzymes involved in magnetosome formation. We will utilise proteins MamP, MamT, MamO and MamX, which were chosen due to their proposed involvement in promoting magnetite crystal maturation in M. gryphiswaldense. The proteins will also be purified and tested in vitro.
Our results will further our understanding of how bacterial cells are able to form and organise magnetite nanoparticles in magnetosomes. Futhermore, we will demonstrate how synthetic biological approaches can be used to make nano-materials.




email twitter instagram facebook