variables.m % UBC iGEM 2016 Consortium Model % Experiments done by David Goertsen, 4th Year Undergraduate Chemical and Biological Engineering Student % MATLAB coding and modeling by David Goertsen tspan = [0 48]; y0 = [0.01 0.01 0 11.1]; %y(1) is C crescentus concentration %y(2) is E coli concentration %y(3) is Cellulose Concentration %y(4) is Glucose Concentration [t,y] = ode45(@consortium, tspan, y0); subplot(2,1,1); plot(t,y(:,1),t,y(:,2)); title('11.1mM Species Growth Comparison'); xlabel('Time (hr)'); ylabel('Concentration (OD600)'); legend('C. crescentus expressing Endo5A', 'E. coli'); subplot(2,1,2); plot(t,y(:,4)); title('Concentration of Glucose versus time'); xlabel('Time (hr)'); ylabel('Concentration (mM)'); legend('Glucose'); END OF VARIABLES.M consortium.m function C = consortium(t,y) % UBC iGEM 2016 Consortium Model % Experiments done by David Goertsen, 4th Year Undergraduate Chemical and Biological Engineering Student % MATLAB coding and modeling by David Goertsen cmax = 0.156; % hr-1 Max specific growth rate for C. crescentus emax = 0.484; % hr^-1 Max specific growth rate for e.coli Ksc = 0.403; %mM Monod Constant for C. crescentus Kse = 0.403; %mM Monod Constant for E.coli Km = 0.03; %mM Michaelis-Menten Constant a = 0.003; %Replaces Xc due to the lack of prokaryote concentration dependance on rate Yc = 0.476; % OD600 / g glucose Ye = 0.2; % OD600 / g glucose MWg = 180.16; % g glucose/mol glucose %y(1) is Caulobacter concentration %y(2) is E coli concentration %y(3) is Cellulose Concentration %y(4) is Glucose Concentration dxdt1 = y(1)*cmax*exp(-y(1))*y(4)/(Ksc + y(4)); dxdt2 = y(2)*emax*exp(-y(2)^2)*y(4)/(Kse + y(4)); dCdt = -a*y(3)/(Km + y(3)); dSdt = 2*a*y(3)/(Km + y(3)) - y(1)*cmax*exp(-y(1))*y(4)*1000/(Ksc + y(4))/(Yc*MWg) - y(2)*emax*exp(-2*y(2)^2)*y(4)*1000/(Kse + y(4))/(Yc*MWg); C = [dxdt1; dxdt2; dCdt; dSdt]; end END OF CONSORTIUM>M