Line 8: | Line 8: | ||
<div class="column full_size" > | <div class="column full_size" > | ||
− | <h2> | + | <h2> Sonicell </h2> |
− | <p> | + | <p>Synthetic biology opens exciting perspectives to design and apply regulatory circuits to control cellular response. Transcriptional regulation may be too slow for therapeutic or diagnostic applications. Several medical doctors and researchers that we consulted stressed the wish for a faster response. Therefore we decided to select as the challenge to design faster responsive cellular circuits. The system we aim to design is composed of the sensing module, which may be triggered by selected molecules, light or other signals; a processing module, which combines different inputs based on protein modifications and interactions and an output module, to provide rapid release of the selected proteins from cells, with a target specification to achieve a response within minutes rather than within hours and days, characteristic for current mammalian cell circuits. We expect that the proof of principle of the designed system and newly designed components may provide important foundational advances for synthetic biology. |
− | + | ||
</p> | </p> | ||
Revision as of 16:55, 12 September 2016
Sonicell
Synthetic biology opens exciting perspectives to design and apply regulatory circuits to control cellular response. Transcriptional regulation may be too slow for therapeutic or diagnostic applications. Several medical doctors and researchers that we consulted stressed the wish for a faster response. Therefore we decided to select as the challenge to design faster responsive cellular circuits. The system we aim to design is composed of the sensing module, which may be triggered by selected molecules, light or other signals; a processing module, which combines different inputs based on protein modifications and interactions and an output module, to provide rapid release of the selected proteins from cells, with a target specification to achieve a response within minutes rather than within hours and days, characteristic for current mammalian cell circuits. We expect that the proof of principle of the designed system and newly designed components may provide important foundational advances for synthetic biology.