Difference between revisions of "Team:Aix-Marseille/Integrated Practices/Process"

(Siderophore recoverer addition)
(Siderophore mediated leaching)
Line 34: Line 34:
 
So where is the innovation in this step? Firstly, in our case, [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] won't be applied on the same materials where is commonly used, in our cases not ores but a leachate of ashes. Basically the main difference will be the metal concentration.
 
So where is the innovation in this step? Firstly, in our case, [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] won't be applied on the same materials where is commonly used, in our cases not ores but a leachate of ashes. Basically the main difference will be the metal concentration.
 
Secondly, [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] is usually synthesized chemically, we'll rather produce it in high amounts with bacteria. Indeed, [[Team:Aix-Marseille/Description#Overview|operon]] of the Desferrioxamine B biosynthesis  from ''Streptomyces coelicolor'' will be cloned into a E. coli bacteria strains in order to produce it, hence lowering the costs of required basic matter as production by bacteria needs especially an appropriate medium and good growth conditions.
 
Secondly, [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] is usually synthesized chemically, we'll rather produce it in high amounts with bacteria. Indeed, [[Team:Aix-Marseille/Description#Overview|operon]] of the Desferrioxamine B biosynthesis  from ''Streptomyces coelicolor'' will be cloned into a E. coli bacteria strains in order to produce it, hence lowering the costs of required basic matter as production by bacteria needs especially an appropriate medium and good growth conditions.
[[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] is a derivative of diamines moelcule and therefore its  [[Team:Aix-Marseille/Experiments|Biosynthesis]] start with an amino acid, lysine. Lysine is quite expansive, and as we are aware about the cost of our process we decided to use a cheap source of lysine the [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|corn steep liquor]]. Such a lysine source is already in use in industry since it's cheap, amino acid provided, produced in industrial amounts and well known as a excellent source of nitrogen in growth media. So in this step we hope we could produce [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] in high quantities with a affordable cost. Moreover, DFHOB production has been repoted with corn steep ATICLE
+
[[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] is a derivative of diamines moelcule and therefore its  [[Team:Aix-Marseille/Experiments|Biosynthesis]] start with an amino acid, lysine. Lysine is quite expansive, and as we are aware about the cost of our process we decided to use a cheap source of lysine the [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|corn steep liquor]]. Such a lysine source is already in use in industry since it's cheap, amino acid provided, produced in industrial amounts and well known as a excellent source of nitrogen in growth media. So in this step we hope we could produce [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] in high quantities with a affordable cost. Moreover, successful DFHOB production has been reported using corn steep as a source of nitrogen and amino acids<ref> Mehrabi et al., 2010 http://www.ncbi.nlm.nih.gov/pubmed/21313893</ref>.
  
 
Following previous uses of [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]], '''78% of platinum''' can be leached with 3mM [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] solution on 100g at 5ppm platinum concentrated ore. That allow us to estimate that in order to reach a 78% yield (max yield obtained) we 'll need to add approximately '''3mg of DFHOB per µg of platinum''' (see [[Team:Aix-Marseille/Integrated_Practices/Process#Quantities_of_DHOB_per_.C2.B5g_of_platinum|Raw calculations]]). Of course this number a based on leaching on ore sample, so maybe we can expect higher yields for the ashes are probably easier to leach than the ore.
 
Following previous uses of [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]], '''78% of platinum''' can be leached with 3mM [[Team:Aix-Marseille/Integrated_Practices/Process#Glossary|DFHOB]] solution on 100g at 5ppm platinum concentrated ore. That allow us to estimate that in order to reach a 78% yield (max yield obtained) we 'll need to add approximately '''3mg of DFHOB per µg of platinum''' (see [[Team:Aix-Marseille/Integrated_Practices/Process#Quantities_of_DHOB_per_.C2.B5g_of_platinum|Raw calculations]]). Of course this number a based on leaching on ore sample, so maybe we can expect higher yields for the ashes are probably easier to leach than the ore.

Revision as of 20:00, 21 September 2016