Difference between revisions of "Team:Ionis Paris/Biobrick Design"

(Created page with "{{IONIS_HEADER}} <html> <!-- ====Google font==== --> <link href='https://fonts.googleapis.com/css?family=Merriweather:400,700,700italic,400italic,300italic...")
 
Line 10: Line 10:
 
         <link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:IONIS_Paris-test?action=raw&ctype=text/css" />
 
         <link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:IONIS_Paris-test?action=raw&ctype=text/css" />
 
         <link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:IONIS_Paris-style-css?action=raw&ctype=text/css" />
 
         <link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:IONIS_Paris-style-css?action=raw&ctype=text/css" />
 +
 
 +
       
 
          
 
          
 
         <!-- ====BREADCUM START==== -->  
 
         <!-- ====BREADCUM START==== -->  
         <section class="blog_banner_paillasse">
+
         <section class="blog_banner_cloning">
 
             <div class="container">
 
             <div class="container">
 
                 <div class="row">
 
                 <div class="row">
 
                     <div class="col-sm-12">
 
                     <div class="col-sm-12">
 
                         <div class="banner_title">
 
                         <div class="banner_title">
                              
+
                             <h1>Biobrick design</h1>
                       
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 26: Line 27:
 
         <!-- ====BREADCUM END==== -->
 
         <!-- ====BREADCUM END==== -->
 
          
 
          
         <!-- ====START CASE STUDY TABLE==== -->
+
         <!-- ====START BLOG TABLE==== -->
         <section class="main_casestudy">
+
         <section class="blog_area section-padding">
 
             <div class="container">
 
             <div class="container">
 
                 <div class="row">
 
                 <div class="row">
 
                     <div class="blog_grid_area">
 
                     <div class="blog_grid_area">
                        <div class="col-xs-12 col-sm-8">
+
                          <div class="col-xs-12 col-sm-7">
                            <div class="bloggrid_left">
+
                                 <div class="blog_top">
                                <div class="case_slider">
+
                                    <div class="item">
+
                                        <figure class="postImg waves-effect">
+
                                            <img src="https://static.igem.org/mediawiki/2016/6/6e/Team_paillasse.jpg" alt="">
+
                                        </figure>
+
                                    </div>
+
                                    <div class="item">
+
                                        <figure class="postImg waves-effect">
+
                                            <img src="https://static.igem.org/mediawiki/2016/7/76/Lab_2.jpg" alt="">
+
                                        </figure>
+
                                    </div>
+
                                   
+
                                 </div>
+
                                <div class="blog_top">
+
 
                                     <h4 class="blog_topHd">
 
                                     <h4 class="blog_topHd">
                                        <a href="single_blog-full.html">Working at Lapaillasse</a>
+
                                    Principle OF THE BIOBRICK DESIGN IN AN IGEM CONTEXT
 
                                     </h4>
 
                                     </h4>
                                     <ul class="blog_s">
+
                                </div>
                                         <li>
+
                                <h3>Biobrick definition</h3>
                                             <a href="#"><i class="zmdi zmdi-calendar-alt"></i>June 7,2016</a>
+
<br/>
                                        </li>
+
<p>In an IGEM context, our genetic circuit, our plasmid, is defined as a biobrick. The different elements of the genetic circuit participate to the specificity of the biobrick. In the IGEM registry, we distinguish 2 components that participate to the composition of a plasmid: the plasmid backbone and the biobrick part (see Figure 2).</p><br/> </div>
                                       
+
                                    </ul>
+
                          <div class="related_post">
 +
 +
                                     <div class="row">
 +
                                     
 +
                                         <div class="related_post_top clearfix">
 +
                                             <div class="col-md-8">
 +
                                                <figure class="postImg waves-effect">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/3/36/Fig_1.png" alt="">
 +
                                </figure>
 +
                                      <div class="blog_heading">
 +
                                        <h4><a href="http://parts.igem.org/Plasmid_backbones/Assembly">Figure 1: General structure of a Biobrick.</a></h4>
 +
                                            </div>
 +
</div>
 +
                        <div class="col-xs-12 col-sm-7">
 +
                                <div class="blog_top">
 +
 
 +
                         
 +
<br/>                                                   
 +
<p>For the assembly of our biobrick we use the BioBrick RFC[10] assembly standard because it is the standard of the IGEM competition and most of the parts available on the registry match this standard. The BioBrick RFC[10] assembly standard is based on the use of a prefix and a suffix placed at the extremities of each part to be assembled in order to obtain standard biobricks that are compatible and thus can be easily assembled.</p><br/>
 +
</div>
 +
 
 +
                                <div class="blog">
 +
                                          <h3>Biobrick RFC[10] assembly standard </h3>
 +
                         
 
                                 </div>
 
                                 </div>
                                 <div class="blog_content">
+
                              <li><p>Prefix and suffix</p>
                                     <p>The iGEM IONIS had the great pleasure to work at La Paillasse, a biohacker space situated in Paris. It is a community laboratories open to everyone who want to try one's hand at doing science.  La Paillasse was created with the open source philosophy to support new form of innovation in the field of biology.  
+
                              </li>
La Paillasse also aim to get together people from different backgrounds and let new ideas appear from this multidisciplinary.
+
 
</p>
+
                                 <p>Prefix and suffix provide a method to obtain standard genetic construction. Their exact sequences are available in Figure 3. Each one includes two different restriction sites: </p>
                                    <p> The community of La Paillasse is composed of people with numerous background, from engineers to philosophe though designer, students and sociologist. However all those people come in the same purpose find an open space to realize their project. Several start-up have see the day at la Paillasse, Meiso (sensory insulation chamber), the Fly lab (innovative drone), Pili (ink making modified bacteria) for example.
+
                              <ul><li><p> - EcoRI and XbaI in the prefix</p>
 +
                              </li>
 +
                              <li><p> - SpeI and PstI in the suffix</p></li>
 +
                              </ul>
 +
 
 +
                             
 +
                    <p>For protein coding regions (that starts with ATG), there is an adapted prefix.</p>
 +
                                    <figure class="postImg waves-effect">
 +
                                     <img src="https://static.igem.org/mediawiki/2016/4/45/IONIS_IGEM_Fig_2_Prefix_and_suffix_sequences_%28version_1%29.png" alt="">
 +
                                </figure>
 +
                    <p>All components of the genetic circuit are added to the system with these prefix and suffix. Once added to the system, in order to be compatible with the RFC[10] standard, a part does not have to contain these four restriction sites, they have to be unique to the prefix and suffix.</p>
 +
                              <li><p>Assembling method</p>
 +
                              </li>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2016/4/45/IONIS_IGEM_Fig_2_Prefix_and_suffix_sequences_%28version_1%29.png" alt="">
 +
                                </figure>
 +
 
 +
                              <li><p>Scar</p>
 +
                              </li>
 +
                    <p>The use of this assembling method leaves a scar between the 2 assembled parts, with the following DNA sequence:<br>
 +
  - 5' [part A]  TACTAGAG  [part B]  3’.
 +
When using the alternate prefix in the case of the assembling of a RBS with a protein coding region, the scar DNA sequence would be:<br>
 +
  - 5' [part A]  TACTAG  [part B, that starts with ATG] 3’.
 
</p>
 
</p>
<p>This is in this multidisciplinary environment that our team have been evolved for several months. This environment had strengthen our though about the importance of multidisciplinary, it was important for us to listen to the comment make by non biologist persons, it allow us to have another point of view on our project conception or application. La Paillasse was the perfect place to carry out a project like ours. We had great time sharing information with the drone making persons from the Fly Lab and listen to the conference organized by La Paillasse.  
+
                    <p>The only disadvantage of the RFC[10] assembly standard is the impossibility to make protein fusion. Indeed the 6bp scar includes a stop codon and the 8bp scar includes a frame-shift and a stop codon. The alternative to this problem is to use a scar-less assembly method or DNA synthesis. </p><br/>
</p><br/>
+
                                    <blockquote>
+
                                        Moreover, la Paillasse give us the possibility to expose our project to the numerous persons that went visiting this buzzing place. We were pleased to share our experience with people from many field such as people from big companies including L'Oréal, ENGIE, but also to the French secretary of state in charge of the higher education and research, Thierry Mandon
+
                                        </blockquote>
+
                              <p>Finally our team at the fantastic opportunity to closely work with the UMPC iGEM team, impact. We could share each other knowledge, have an external point of view on our project and manipulation. We also help each other when needed,
+
</p>
+
  <p>Our team is also really grateful to the laboratories INSERM …., that give us the material we needed
+
to arrange our paillasse.
+
</p>
+
  
 +
                             
 +
                                          <h3>Biobrick part</h3>
 +
                         
 +
                    <p>The biobrick part is composed by the sequence located between the prefix and the suffix. This sequence includes the devices that will realize given functions in the cell (e.g protein production).
 +
Each device is a composite part, which means it is composed of several basic parts assembled together to ensure a specific function. A basic part is a single functional unit coding for a basic biological function and cannot be split into smaller units. Promoters, coding gene or RBSs are examples of basic parts. Two devices make up our biobrick part, one in charge of the XylR protein synthesis and one in charge of the Gaussia luciferase synthesis.</p><br/>
 +
 +
                                <div class="blog">
 +
                                          <h3>Plasmid backbone</h3>
 +
                         
 
                                 </div>
 
                                 </div>
                                  
+
                    <p>The plasmid backbone is the sequence that begins with the suffix and ends with the prefix. The plasmid backbone mainly serves as support for the propagation of the biobrick part. It includes the replication origin and the antibiotic resistance marker.<br/>
                                     <div class="related_post">
+
The presence of the antibiotic resistance marker in the backbone allows, after the bacterial transformation, the selection of only clones that incorporate the plasmid thanks to a medium containing the antibiotic. Clones that do not incorporate the plasmid do not have the antibiotic resistance and thus cannot survive in the selective medium.
                                         <div class="row">
+
In the iGEM competition, a set of 4 linearized plasmid backbones is sent to each team: pSB1A3, pSB1C3, pSB1K3.m1, and pSB1T3. They respectively include these 4 antibiotics: Ampicillin, Chloramphenicol, Kanamycin and Tetracycline.
                                            
+
</p><br/>   
                                            <div class="related_post_top clearfix">
+
                     
                                                <div class="col-md-6">
+
                              <div class="blog_top">
                                                   
+
                                    <h4 class="blog_topHd">
                                                 </div>
+
                                      PRINCIPLE AND FUNCTIONING OF OUT "BIOSENSOR" PLASMID
                                                <div class="col-md-6">
+
                                    </h4>
 +
                                        </div>
 +
<div class="blog_content">
 +
                      <br/>
 +
                    <p>The biosensor cell contains a genetic circuit, located on a plasmid support, allowing the expression of genes involved in the detection of the pollutant.
 +
The Pr promoter is a constitutive promoter allowing the transcription of the XylR gene, coding for the XylR protein. The XylR protein, a transcriptional regulatory protein for the Pu promoter, is activated by aromatic hydrocarbons that carry a methyl group (as the toluene and xylene). In our biosensor, the Pu promoter allows the transcription of the bioluminescent reporter gene GLuc, coding for the Gaussia luciferase. When this enzyme reacts with its substrate, the Coelenterazine, it emits luminescence.</p>
 +
                                    <figure class="postImg waves-effect">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/1/1c/Biosensor_mechanism.jpg" alt="">
 +
                                 </figure>
 +
                                <div class="blog">
 +
                                          <h3>Plasmid map</h3>
 +
                                </div>
 +
 
 +
                    <p>For the construction of our plasmid, we selected parts that are RFC[10] compatible.
 +
In Figure 4 below, the map of our plasmid is represented in a simplified way, composed of the pSB1C3 backbone and the biosensor part.</p>
 +
                                <figure class="postImg waves-effect">
 +
                                     <img src="https://static.igem.org/mediawiki/2016/e/e1/Plasmid_map.jpg" alt="">
 +
                                </figure>
 +
                             
 +
                                <div class="blog_top">
 +
                                    <h4 class="blog_topHd">
 +
                                      Details on the used parts
 +
                                    </h4>
 +
                                         </div>
 +
                                    <br/>
 +
 
 +
                                <div class="blog">
 +
                                           <h3>Chassis</h3>
 +
                                </div>
 +
                 
 +
                    <p>We chose to use Escherichia Coli strain DH5α as chassis for our plasmid. Indeed, this bacterium grows easily and has several mutations that make it an excellent choice for cloning procedures with a high efficiency transformation. All our parts are optimized for E. Coli. Moreover, E. Coli is the model organism, entirely sequenced.</p><br/>
 +
                                <div class="blog">
 +
                                          <h3>Plasmid Backbone</h3>
 +
                                </div>
 +
                                <p>The chosen plasmid backbone is pSB1C3, a high copy number assembly plasmid backbone of 2070 pb, because this type of plasmid backbone is the most used to assemble BioBrick standard biological parts together. This plasmid backbone includes a high copy replication origin that allows the obtaining of a high copy number per cell, which facilitates the DNA purification. The ccdb gene ensures to not transform the uncut plasmid during the assembly of two BioBrick parts. As already specified, the presence of the antibiotic resistance marker in the backbone allows the selection of clones that incorporated the plasmid.</p>
 +
                                <p>This plasmid is also the designated plasmid backbone required for the registry shipping during the IGEM competition.</p>
 +
                                <p>The pSB1C3 plasmid backbone confers Chloramphenicol resistance and includes the pUC19-derived pMB1, replication origin with a copy number of 100-300 per cell. The map of pSB1C3 plasmid is available below in Figure 2.</p><br/>
 +
</div>
 +
 
 +
 +
                          <div class="related_post">
 +
 +
                                    <div class="row">
 +
                                     
 +
                                        <div class="related_post_top clearfix">
 +
                                            <div class="col-md-8">
 +
                                                 <figure class="postImg waves-effect">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/4/47/IONIS_IGEM_plasmid_biobricks.jpg" alt="">
 +
                                </figure>
 +
                                      <div class="blog_heading">
 +
                                        <h4><a href="http://parts.igem.org/Plasmid_backbones/Assembly">
 +
Figure 6: Standard structure of high copy number assembly plasmid backbone.</a></h4>
 +
                                            </div>
 +
                                          </div>
 +
                                            <div class="col-md-4">
 +
                                                <a href="http://parts.igem.org/Part:pSB1C3">
 
                                                     <figure class="postImg waves-effect">
 
                                                     <figure class="postImg waves-effect">
                                                         <img src="img/related_project2.jpg" alt="">
+
                                                         <img src="https://static.igem.org/mediawiki/2016/a/a2/IONIS_IGEM_biobricks_plasmid.jpg" alt="">
 
                                                     </figure>
 
                                                     </figure>
 +
                                                </a>
 +
                                                <div class="blog_heading">
 +
                                                    <h4><a href="http://parts.igem.org/Part:pSB1C3" >Figure 7: Map of pSB1C3 plasmid.</a></h4>
 
                                                      
 
                                                      
                                                 </div>
+
                                                 </div>  
                                           
+
 
                                             </div>
 
                                             </div>
                                        </div>
+
</div>
                                     </div>
+
 
 +
                      <div class="col-xs-12 col-sm-7">
 +
                       
 +
                                <div class="blog">
 +
                                          <h3>Constitutive Pr promoter</h3>
 +
                                </div>
 +
                                  <p>The Pr promoter is found in the toluene recognition system and is composed of 410 bp. It has a constitutive expression. This promoter is available on the iGEM registry at this ID access: BBa_I723018.</p>
 +
                                  <p>We chose to use this promoter because it is the specific promoter for the XylR gene. This promoter is naturally constitutive. It leads to the permanent production of the XylR protein. Indeed, the induced luminescence has to be proportional to the pollutant rate. Therefore, when pollutant molecules enter in the bacteria, the XylR protein has to be present in sufficient amount.</p><br/>
 +
 
 +
                                <div class="blog">
 +
                                          <h3>XylR gene</h3>
 +
                                </div>
 +
                                  <p>The XylR gene, a gene of 1795 bp, encodes for the XylR protein and is regulated by the Pr promoter in its natural organization. This gene is available on the iGEM registry at this ID access: BBa_K1834844.</p>
 +
                                  <p>The XylR protein, mined from Pseudomonas putida, is involved in the transcriptional activation of the toluene recognition system. This regulatory protein allows the detection of aromatic hydrocarbons that carry a methyl group, i.e. xylene, toluene and 1-chloro-3-methyl-benzene. The A domain of the XylR protein (sensing domain), reacts with the pollutant molecule by binding to its methyl group. This leads to the formation of a tetramer. The C domain is involved in the dimerization of XylR, which is ATP dependent. The made up tetramer acts as an activator transcriptional factor for the Pu promoter, through the DNA binding D domain.</p><br/>
 +
 
 +
                                <div class="blog">
 +
                                          <h3>Pu promoter</h3>
 +
                                </div>
 +
                                  <p>Pu is a promoter found in the toluene recognition system and is composed of 320 bp. This promoter is available on the iGEM registry at this ID access: BBa_I723020.
 +
<br/>We chose to use this promoter because of its sensibility to the tetramer formed by the transcriptional regulator XylR coupled with xylene, toluene or 1-chloro-3-methyl-benzene, in response to the detection of one of these environmental pollutants.</p><br/>
 +
 
 +
                                <div class="blog">
 +
                                          <h3>GLuc gene</h3>
 +
                                </div>
 +
                                  <p>This gene is found in a well-known organism, the copepod Gaussia princeps. It encodes for a Luciferase enzyme, the Gaussia Luciferase, also known as GLuc, which is involved in a bioluminescence process. This enzyme degrades its substrate, the Coelenterazine, into a product, the Coelenteramide. With an optimal substrate level, this step produces energy in the form of protons that can be recovered with a fixed spectrophotometer at 475nm (green light).</p>
 +
                                  <p>We chose to use the GLuc-His part, a gene of 522 bp, available on the iGEM registry at the BBa_K1732027 ID access. It is an optimized version for E.Coli of its twin the GLUCCO-His part (BBa_K1732003), which codes for the Gaussia luciferase following by 6 histidines. In our plasmid, this gene is positioned after an induced promoter, known as Pu promoter to report the activation of the toluene recognition system.
 +
The Gaussia luciferase needs the addition of substrate to ensure its activity because this molecule is not synthetized by our biosensor. Due to its secreted form, lysing cells in order to assay GLuc activity is not necessary.</p>
 +
 
 +
                                  <p>The Gaussia luciferase is an ideal reporter gene because of its stability at high temperature thanks to disulfide bonds and because it has extremely high activity in light production for very sensitive assays. When compared to Firefly and Renilla luciferase, GLuc generates over 1000-fold higher bioluminescent signal intensity. The NanoLuc has an activity a little higher but this luciferase is very recent and thus less characterized.</p>
 +
                                  <p>Advantages of luminescence, over fluorescence, include the absence of background noise, the amplification of signal and a high dynamic range that spans many orders of magnitude. Indeed, since light emission depends strictly on the chemical reaction between the substrate and the luciferase, there is no background noise originating from the sample. Furthermore, the turnover of the light reaction significantly amplifies the reporter signal.Even though bioluminescence is currently used mainly for transcription study and cell imaging, this method become increasingly popular for quantitative analysis.<br/>Moreover, the fact that the luciferase substrate have to be added in the laboratory present an interesting way to control the reaction. Indeed the luciferase substrate can be added at the same time for each samples allowing a better compliance between the different samples.</p>
 +
                                  <p>The transcription of luciferase in the presence of specific pollutants and the use of its substrate as a manner to assess pollutant concentration is an innovative approach , yet poorly studied.</p>
 +
                                  <p>For more information about bioluminescence and the Gaussia luciferase, <a href="https://2016.igem.org/Single_blog-full.html">click here ! </a></p><br/>
 +
 
 +
                                <div class="blog">
 +
                                          <h3>Elowitz RBS</h3>
 +
                                </div>
 +
                                  <p>In our plasmid, all genes, XylR and GLuc, are preceded by a sequence that can easily affect the rate of translation: the Ribosome binding Sequence (RBS).</p>
 +
                                  <p>There are different types of RBS, depending on their binding strength:</p>
 +
                                    <li><p>Strong RBS:</p></li>
 +
                                  <p>The Elowitz RBS is the stronger RBS with an efficiency of 1.0. This RBS is a sequence of 12 bp and is available on the iGEM registry at this ID access: BBa_B0034.<br/>An other strong RBS, based on Ron Weiss thesis, is available on the iGEM registry at this ID access: BBa_B0030. This RBS, a sequence of 15 bp, has an efficiency of 0.6.<br/>This type of RBS allows a high translation rate that leads to a high protein production. However, a too high production can be harmful for the organism because a lot of proteins could be unfolded or misfolded.</p>
 +
                                   
 +
                                    <li><p>Middle RBS: </p></li>
 +
                                  <p>An example of Middle RBS is available on the iGEM registry at this ID access: BBa_B0032. This RBS, a sequence of 13 bp derivative of BBa_B0030, has an efficiency of 0.3.</p>
 +
 
 +
                                    <li><p>Weak RBS:</p></li>
 +
                                  <p>The weaker RBS is a sequence of 11 bp with an efficiency of 0.01, derivative of BBa_B0030. This RBS is available on the iGEM registry at this ID access: BBa_0033. <br/>An other weak RBS is available on the iGEM registry at this ID access: BBa_B0031. This RBS, a sequence of 14 bp derivative of BBa_B0030, has an efficiency of 0.07.</p><br/>
 +
 
 +
                                     <blockquote>
 +
In our project, we chose to use the stronger RBS, the Elowitz RBS (BBa_B0034), in order to have a maximal production rate. Indeed, as we already specified, the induced luminescence has to be proportional to the pollutant rate. Therefore, when pollutant molecules enter in the bacteria, the XylR protein has to be present in an enough amount and the Gaussia luciferase has to be produced rapidly in an amount that is proportional to the pollutant amount. This allows a luminescent response corresponding to the pollutant rate.
 +
                                    </blockquote>
 +
                                <div class="blog">
 +
                                          <h3>Double terminator</h3>
 +
                                </div>
 +
                                <p>A terminator is a genetic part placed at the end of a gene, in order to end transcription thanks to a stop codon. It exists several types of terminators but the most used are forward terminators. In general, some RNA polymerases will continue the transcription after the terminator, thus the terminator efficiency is not 100% in the most cases.<br/>In order to increase the terminator efficiency in our plasmid we chose to use a double terminator. We selected two different double terminators that we have to test.<br/>The first one of 129 bp, consisting of BBa_B0010 and BBa_B0012 as shown in Figure 4, available on the iGEM registry at this ID access: BBa_B0015. It is the most used terminator for forward transcription with a forward-efficiency of 0,984 according to measurements done by Caitlin Conboy, and of 0,97 according to measurements done by Jason Kelly. Procedures used for these measurements are explained in the <a href="http://parts.igem.org/Help:Terminators/Measurement">IGEM registry</a>.
 +
 
 +
</p>
 +
 
 +
 
 +
</div>
 +
</div>
 +
</div>
 
                                 </div>
 
                                 </div>
 +
                              </div>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
                        <aside class="col-xs-12 col-sm-3 right_sidebar_area">
+
                        <aside class="col-xs-12 col-sm-3 right_sidebar_area">
                     
+
                         
                            <div class="sidebarBlog_list mb80">  
+
                            <div class="sidebarBlog_list mb80">  
 
                                 <h4 class="sidebar_Hd">Categories</h4>
 
                                 <h4 class="sidebar_Hd">Categories</h4>
 
                                 <ul class="sidebarList">
 
                                 <ul class="sidebarList">
   
 
 
                                     <li>
 
                                     <li>
                                         <a href="https://2016.igem.org/Biobrick">
+
                                         <a href="https://2016.igem.org/At_the_lab.html">
                                             <span>Biobrick Design</span>
+
                                             <span>Working at Lapaillasse</span>
                                            <span class="list_right"></span>
+
                                     
 
                                         </a>
 
                                         </a>
 
                                     </li>
 
                                     </li>
 
                                     <li>
 
                                     <li>
                                         <a href="https://2016.igem.org/Index-3.html">
+
                                         <a href="https://2016.igem.org/Biobrick">
                                             <span>Cloning Strategy</span>
+
                                             <span>Biobrick Design</span>
                                            <span class="list_right"></span>
+
                                   
 
                                         </a>
 
                                         </a>
 
                                     </li>
 
                                     </li>
Line 117: Line 266:
 
                                         <a href="https://2016.igem.org/Protocol">
 
                                         <a href="https://2016.igem.org/Protocol">
 
                                             <span>Protocol</span>
 
                                             <span>Protocol</span>
                                            <span class="list_right"></span>
+
                                     
 
                                         </a>
 
                                         </a>
 
                                     </li>
 
                                     </li>
Line 123: Line 272:
 
                                         <a href="https://2016.igem.org/Notebook">
 
                                         <a href="https://2016.igem.org/Notebook">
 
                                             <span>Notebook</span>
 
                                             <span>Notebook</span>
                                            <span class="list_right"></span>
+
                                         
 
                                         </a>
 
                                         </a>
 
                                     </li>
 
                                     </li>
 +
                               
 
                                 </ul>
 
                                 </ul>
 
                             </div>
 
                             </div>
                            <div class="sidebarPost_list mb80">
+
                         
                                <ul class="tab_menu" role="tablist">
+
                                   
+
                                <!-- Tab panes -->
+
                                <div class="tab-content">
+
                                    <div role="tabpanel" class="tab-pane active fade in" id="recent_post">
+
                                        <div class="post_list">
+
                                            <figure class="post_listImg">
+
                                                <a href="blog_grid.html">
+
                                                    <img src="img/blog_list_1.jpg" alt="">
+
                                                </a>
+
                                            </figure>
+
                                           
+
                                        </div>
+
                                        <div class="post_list">
+
                                            <figure class="post_listImg">
+
                                                <a href="blog_grid.html">
+
                                                    <img src="img/blog_list_2.jpg" alt="">
+
                                                </a>
+
                                            </figure>
+
                                         
+
                                        </div>
+
                                        <div class="post_list">
+
                                            <figure class="post_listImg">
+
                                                <a href="blog_grid.html">
+
                                                    <img src="img/blog_list_3.jpg" alt="">
+
                                                </a>
+
                                            </figure>
+
                                            <div class="post_text">
+
                                               
+
                                                   
+
                                        </div>
+
                                    </div>
+
 
                                     <div role="tabpanel" class="tab-pane fade" id="popular_post">
 
                                     <div role="tabpanel" class="tab-pane fade" id="popular_post">
 
                                         <div class="post_list">
 
                                         <div class="post_list">
Line 227: Line 345:
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
                           
+
                     
                           
+
 
                         </aside>
 
                         </aside>
                        </div>
 
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </section>
 
         </section>
         <!-- ====END CASE STUDY TABLE==== -->
+
         <!-- ====END BLOG TABLE==== -->
       
+
     
+
 
          
 
          
 
         <!-- ====START SOCIAL Link==== -->
 
         <!-- ====START SOCIAL Link==== -->
Line 280: Line 394:
 
         <!-- ====END FOOTER TOP==== -->
 
         <!-- ====END FOOTER TOP==== -->
 
          
 
          
       
+
      <!-- ====START FOOTER AREA==== -->
       
+
        <!-- ====START FOOTER AREA==== -->
+
 
         <footer class="footer_area">
 
         <footer class="footer_area">
 
             <div class="footer_middle">
 
             <div class="footer_middle">
Line 308: Line 420:
 
                                     <ul>
 
                                     <ul>
 
                                         <li><i class="zmdi zmdi-pin"></i>
 
                                         <li><i class="zmdi zmdi-pin"></i>
                                             <span>Location: 66 Rue Guy Môquet, 94800 Villejuif, France</span>
+
                                             <span>Location: Lorance Road 542B,5248 MT, Wordwide Country</span>
 
                                         </li>
 
                                         </li>
 
                                         <li><i class="zmdi zmdi-phone"></i>
 
                                         <li><i class="zmdi zmdi-phone"></i>
Line 314: Line 426:
 
                                         </li>
 
                                         </li>
 
                                         <li><i class="zmdi zmdi-email"></i>
 
                                         <li><i class="zmdi zmdi-email"></i>
                                             <a href="mailto:contact@domain.com">email: clement@lapierre-fr.net</a>
+
                                             <a href="mailto:contact@domain.com">email: contact@domain.com</a>
 
                                         </li>
 
                                         </li>
 
                                         <li><i class="zmdi zmdi-globe"></i>
 
                                         <li><i class="zmdi zmdi-globe"></i>

Revision as of 13:18, 10 October 2016

Principle OF THE BIOBRICK DESIGN IN AN IGEM CONTEXT

Biobrick definition


In an IGEM context, our genetic circuit, our plasmid, is defined as a biobrick. The different elements of the genetic circuit participate to the specificity of the biobrick. In the IGEM registry, we distinguish 2 components that participate to the composition of a plasmid: the plasmid backbone and the biobrick part (see Figure 2).



For the assembly of our biobrick we use the BioBrick RFC[10] assembly standard because it is the standard of the IGEM competition and most of the parts available on the registry match this standard. The BioBrick RFC[10] assembly standard is based on the use of a prefix and a suffix placed at the extremities of each part to be assembled in order to obtain standard biobricks that are compatible and thus can be easily assembled.


Biobrick RFC[10] assembly standard

  • Prefix and suffix

  • Prefix and suffix provide a method to obtain standard genetic construction. Their exact sequences are available in Figure 3. Each one includes two different restriction sites:

    • - EcoRI and XbaI in the prefix

    • - SpeI and PstI in the suffix

    For protein coding regions (that starts with ATG), there is an adapted prefix.

    All components of the genetic circuit are added to the system with these prefix and suffix. Once added to the system, in order to be compatible with the RFC[10] standard, a part does not have to contain these four restriction sites, they have to be unique to the prefix and suffix.

  • Assembling method

  • Scar

  • The use of this assembling method leaves a scar between the 2 assembled parts, with the following DNA sequence:
    - 5' [part A] TACTAGAG [part B] 3’. When using the alternate prefix in the case of the assembling of a RBS with a protein coding region, the scar DNA sequence would be:
    - 5' [part A] TACTAG [part B, that starts with ATG] 3’.

    The only disadvantage of the RFC[10] assembly standard is the impossibility to make protein fusion. Indeed the 6bp scar includes a stop codon and the 8bp scar includes a frame-shift and a stop codon. The alternative to this problem is to use a scar-less assembly method or DNA synthesis.


    Biobrick part

    The biobrick part is composed by the sequence located between the prefix and the suffix. This sequence includes the devices that will realize given functions in the cell (e.g protein production). Each device is a composite part, which means it is composed of several basic parts assembled together to ensure a specific function. A basic part is a single functional unit coding for a basic biological function and cannot be split into smaller units. Promoters, coding gene or RBSs are examples of basic parts. Two devices make up our biobrick part, one in charge of the XylR protein synthesis and one in charge of the Gaussia luciferase synthesis.


    Plasmid backbone

    The plasmid backbone is the sequence that begins with the suffix and ends with the prefix. The plasmid backbone mainly serves as support for the propagation of the biobrick part. It includes the replication origin and the antibiotic resistance marker.
    The presence of the antibiotic resistance marker in the backbone allows, after the bacterial transformation, the selection of only clones that incorporate the plasmid thanks to a medium containing the antibiotic. Clones that do not incorporate the plasmid do not have the antibiotic resistance and thus cannot survive in the selective medium. In the iGEM competition, a set of 4 linearized plasmid backbones is sent to each team: pSB1A3, pSB1C3, pSB1K3.m1, and pSB1T3. They respectively include these 4 antibiotics: Ampicillin, Chloramphenicol, Kanamycin and Tetracycline.


    PRINCIPLE AND FUNCTIONING OF OUT "BIOSENSOR" PLASMID


    The biosensor cell contains a genetic circuit, located on a plasmid support, allowing the expression of genes involved in the detection of the pollutant. The Pr promoter is a constitutive promoter allowing the transcription of the XylR gene, coding for the XylR protein. The XylR protein, a transcriptional regulatory protein for the Pu promoter, is activated by aromatic hydrocarbons that carry a methyl group (as the toluene and xylene). In our biosensor, the Pu promoter allows the transcription of the bioluminescent reporter gene GLuc, coding for the Gaussia luciferase. When this enzyme reacts with its substrate, the Coelenterazine, it emits luminescence.

    Plasmid map

    For the construction of our plasmid, we selected parts that are RFC[10] compatible. In Figure 4 below, the map of our plasmid is represented in a simplified way, composed of the pSB1C3 backbone and the biosensor part.

    Details on the used parts


    Chassis

    We chose to use Escherichia Coli strain DH5α as chassis for our plasmid. Indeed, this bacterium grows easily and has several mutations that make it an excellent choice for cloning procedures with a high efficiency transformation. All our parts are optimized for E. Coli. Moreover, E. Coli is the model organism, entirely sequenced.


    Plasmid Backbone

    The chosen plasmid backbone is pSB1C3, a high copy number assembly plasmid backbone of 2070 pb, because this type of plasmid backbone is the most used to assemble BioBrick standard biological parts together. This plasmid backbone includes a high copy replication origin that allows the obtaining of a high copy number per cell, which facilitates the DNA purification. The ccdb gene ensures to not transform the uncut plasmid during the assembly of two BioBrick parts. As already specified, the presence of the antibiotic resistance marker in the backbone allows the selection of clones that incorporated the plasmid.

    This plasmid is also the designated plasmid backbone required for the registry shipping during the IGEM competition.

    The pSB1C3 plasmid backbone confers Chloramphenicol resistance and includes the pUC19-derived pMB1, replication origin with a copy number of 100-300 per cell. The map of pSB1C3 plasmid is available below in Figure 2.


    Constitutive Pr promoter

    The Pr promoter is found in the toluene recognition system and is composed of 410 bp. It has a constitutive expression. This promoter is available on the iGEM registry at this ID access: BBa_I723018.

    We chose to use this promoter because it is the specific promoter for the XylR gene. This promoter is naturally constitutive. It leads to the permanent production of the XylR protein. Indeed, the induced luminescence has to be proportional to the pollutant rate. Therefore, when pollutant molecules enter in the bacteria, the XylR protein has to be present in sufficient amount.


    XylR gene

    The XylR gene, a gene of 1795 bp, encodes for the XylR protein and is regulated by the Pr promoter in its natural organization. This gene is available on the iGEM registry at this ID access: BBa_K1834844.

    The XylR protein, mined from Pseudomonas putida, is involved in the transcriptional activation of the toluene recognition system. This regulatory protein allows the detection of aromatic hydrocarbons that carry a methyl group, i.e. xylene, toluene and 1-chloro-3-methyl-benzene. The A domain of the XylR protein (sensing domain), reacts with the pollutant molecule by binding to its methyl group. This leads to the formation of a tetramer. The C domain is involved in the dimerization of XylR, which is ATP dependent. The made up tetramer acts as an activator transcriptional factor for the Pu promoter, through the DNA binding D domain.


    Pu promoter

    Pu is a promoter found in the toluene recognition system and is composed of 320 bp. This promoter is available on the iGEM registry at this ID access: BBa_I723020.
    We chose to use this promoter because of its sensibility to the tetramer formed by the transcriptional regulator XylR coupled with xylene, toluene or 1-chloro-3-methyl-benzene, in response to the detection of one of these environmental pollutants.


    GLuc gene

    This gene is found in a well-known organism, the copepod Gaussia princeps. It encodes for a Luciferase enzyme, the Gaussia Luciferase, also known as GLuc, which is involved in a bioluminescence process. This enzyme degrades its substrate, the Coelenterazine, into a product, the Coelenteramide. With an optimal substrate level, this step produces energy in the form of protons that can be recovered with a fixed spectrophotometer at 475nm (green light).

    We chose to use the GLuc-His part, a gene of 522 bp, available on the iGEM registry at the BBa_K1732027 ID access. It is an optimized version for E.Coli of its twin the GLUCCO-His part (BBa_K1732003), which codes for the Gaussia luciferase following by 6 histidines. In our plasmid, this gene is positioned after an induced promoter, known as Pu promoter to report the activation of the toluene recognition system. The Gaussia luciferase needs the addition of substrate to ensure its activity because this molecule is not synthetized by our biosensor. Due to its secreted form, lysing cells in order to assay GLuc activity is not necessary.

    The Gaussia luciferase is an ideal reporter gene because of its stability at high temperature thanks to disulfide bonds and because it has extremely high activity in light production for very sensitive assays. When compared to Firefly and Renilla luciferase, GLuc generates over 1000-fold higher bioluminescent signal intensity. The NanoLuc has an activity a little higher but this luciferase is very recent and thus less characterized.

    Advantages of luminescence, over fluorescence, include the absence of background noise, the amplification of signal and a high dynamic range that spans many orders of magnitude. Indeed, since light emission depends strictly on the chemical reaction between the substrate and the luciferase, there is no background noise originating from the sample. Furthermore, the turnover of the light reaction significantly amplifies the reporter signal.Even though bioluminescence is currently used mainly for transcription study and cell imaging, this method become increasingly popular for quantitative analysis.
    Moreover, the fact that the luciferase substrate have to be added in the laboratory present an interesting way to control the reaction. Indeed the luciferase substrate can be added at the same time for each samples allowing a better compliance between the different samples.

    The transcription of luciferase in the presence of specific pollutants and the use of its substrate as a manner to assess pollutant concentration is an innovative approach , yet poorly studied.

    For more information about bioluminescence and the Gaussia luciferase, click here !


    Elowitz RBS

    In our plasmid, all genes, XylR and GLuc, are preceded by a sequence that can easily affect the rate of translation: the Ribosome binding Sequence (RBS).

    There are different types of RBS, depending on their binding strength:

  • Strong RBS:

  • The Elowitz RBS is the stronger RBS with an efficiency of 1.0. This RBS is a sequence of 12 bp and is available on the iGEM registry at this ID access: BBa_B0034.
    An other strong RBS, based on Ron Weiss thesis, is available on the iGEM registry at this ID access: BBa_B0030. This RBS, a sequence of 15 bp, has an efficiency of 0.6.
    This type of RBS allows a high translation rate that leads to a high protein production. However, a too high production can be harmful for the organism because a lot of proteins could be unfolded or misfolded.

  • Middle RBS:

  • An example of Middle RBS is available on the iGEM registry at this ID access: BBa_B0032. This RBS, a sequence of 13 bp derivative of BBa_B0030, has an efficiency of 0.3.

  • Weak RBS:

  • The weaker RBS is a sequence of 11 bp with an efficiency of 0.01, derivative of BBa_B0030. This RBS is available on the iGEM registry at this ID access: BBa_0033.
    An other weak RBS is available on the iGEM registry at this ID access: BBa_B0031. This RBS, a sequence of 14 bp derivative of BBa_B0030, has an efficiency of 0.07.


    In our project, we chose to use the stronger RBS, the Elowitz RBS (BBa_B0034), in order to have a maximal production rate. Indeed, as we already specified, the induced luminescence has to be proportional to the pollutant rate. Therefore, when pollutant molecules enter in the bacteria, the XylR protein has to be present in an enough amount and the Gaussia luciferase has to be produced rapidly in an amount that is proportional to the pollutant amount. This allows a luminescent response corresponding to the pollutant rate.

    Double terminator

    A terminator is a genetic part placed at the end of a gene, in order to end transcription thanks to a stop codon. It exists several types of terminators but the most used are forward terminators. In general, some RNA polymerases will continue the transcription after the terminator, thus the terminator efficiency is not 100% in the most cases.
    In order to increase the terminator efficiency in our plasmid we chose to use a double terminator. We selected two different double terminators that we have to test.
    The first one of 129 bp, consisting of BBa_B0010 and BBa_B0012 as shown in Figure 4, available on the iGEM registry at this ID access: BBa_B0015. It is the most used terminator for forward transcription with a forward-efficiency of 0,984 according to measurements done by Caitlin Conboy, and of 0,97 according to measurements done by Jason Kelly. Procedures used for these measurements are explained in the IGEM registry.