Difference between revisions of "Team:CU-Boulder/Description"

Line 47: Line 47:
 
<p class = "main">
 
<p class = "main">
 
BLAH BLAH BLAH SCIENCE BLAH </p>
 
BLAH BLAH BLAH SCIENCE BLAH </p>
<figure style="float:right">
 
    <img src="https://static.igem.org/mediawiki/2016/6/69/T--CU-Boulder--30gel.jpeg" style="width:350px;height:458px;margin-right: 70px; padding: 10px 10px 10px 10px; float:right">
 
<figcaption style = "padding: 10px 10px 10px; margin-top:460px; margin-right:60px;  width: 24em">Gel.2 - Lane 2: bad cut with E Lane 3: Nep-Lo 1k3 Lane 4: Nep-Lo 1k3 Lane 5: Ladder Lane 6: eGFP-Hi 1k3 Lane 7: eGFP-Hi 1k3</figcaption>
 
    <!--<p style="margin-left:150px">
 
        The caption text is a pain
 
    </p> -->
 
</figure>
 
 
<h3> Why we chose Bacterial Micro-Compartments </h3>
 
<h3> Why we chose Bacterial Micro-Compartments </h3>
 
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS.  Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy  has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p>
 
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS.  Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy  has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p>

Revision as of 16:24, 10 October 2016

Project Description

BLAH BLAH BLAH SCIENCE BLAH

Why we chose Bacterial Micro-Compartments

Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.

Image on Right

Fig.1 - Jonah and his creepy smile