Difference between revisions of "Team:CU-Boulder/Description"

Line 67: Line 67:
  
 
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS.  Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy  has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p>
 
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS.  Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy  has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p>
 
+
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS.  Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy  has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p>
  
  

Revision as of 16:35, 10 October 2016

Project Description

UNDER CONSTRUCTION DO LOOK AT ME!!

Why we chose Bacterial Micro-Compartments

Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.

Fig.1 - Jonah and his creepy smile, I hope this caption fits

Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.

Fig.1 - Jonah and his creepy smile, I hope this caption fits

Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.

Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.