Line 46: | Line 46: | ||
<h3> Project Description </h3> | <h3> Project Description </h3> | ||
<p class = "main"> | <p class = "main"> | ||
− | UNDER CONSTRUCTION | + | UNDER CONSTRUCTION DONT LOOK AT ME!! </p> |
+ | |||
− | |||
<h3> Why we chose Bacterial Micro-Compartments </h3> | <h3> Why we chose Bacterial Micro-Compartments </h3> | ||
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | <p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | ||
Line 54: | Line 54: | ||
<img src="https://static.igem.org/mediawiki/2016/e/e3/Jonah1.jpg" style="width:350px;height:458px;margin-right: 70px; padding: 10px 10px 10px 10px; float:right"> | <img src="https://static.igem.org/mediawiki/2016/e/e3/Jonah1.jpg" style="width:350px;height:458px;margin-right: 70px; padding: 10px 10px 10px 10px; float:right"> | ||
<figcaption style = "padding: 5px; width: 20em; margin-right:50px">Fig.1 - Jonah and his creepy smile, I hope this caption fits</figcaption> | <figcaption style = "padding: 5px; width: 20em; margin-right:50px">Fig.1 - Jonah and his creepy smile, I hope this caption fits</figcaption> | ||
− | + | ||
− | + | ||
− | + | ||
</figure> | </figure> | ||
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | <p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | ||
Line 63: | Line 61: | ||
<img src="https://static.igem.org/mediawiki/2016/e/e3/Jonah1.jpg" style="width:350px;height:458px;margin-left: 70px;padding: 10px 10px 10px 10px; float:left"> | <img src="https://static.igem.org/mediawiki/2016/e/e3/Jonah1.jpg" style="width:350px;height:458px;margin-left: 70px;padding: 10px 10px 10px 10px; float:left"> | ||
<figcaption style = "margin-left: 70px;padding: 10px 10px 10px; width: 20em;">Fig.1 - Jonah and his creepy smile, I hope this caption fits</figcaption> | <figcaption style = "margin-left: 70px;padding: 10px 10px 10px; width: 20em;">Fig.1 - Jonah and his creepy smile, I hope this caption fits</figcaption> | ||
− | + | ||
− | + | ||
− | + | ||
</figure> | </figure> | ||
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | <p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | ||
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | <p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p> | ||
− | + | ||
<!--<h3>★ ALERT! </h3> | <!--<h3>★ ALERT! </h3> |
Revision as of 16:51, 10 October 2016
Project Description
UNDER CONSTRUCTION DONT LOOK AT ME!!
Why we chose Bacterial Micro-Compartments
Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.
Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.
Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.
Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.