Jegjohnston (Talk | contribs) |
|||
Line 274: | Line 274: | ||
</div> | </div> | ||
<!-- BEGIN: FEATURES 1 --> | <!-- BEGIN: FEATURES 1 --> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<!-- END: FEATURES 1 --> | <!-- END: FEATURES 1 --> | ||
<!-- END: CONTENT/FEATURES/FEATURES-1 --> | <!-- END: CONTENT/FEATURES/FEATURES-1 --> |
Revision as of 22:27, 13 October 2016
Our Project
-
Project Description
Mars and the cosmos are tantalizingly close for Mankind to reach in the next century; however, there are several glaring problems that we must hurdle to reach this objective. Stellar radiation is chief among them. Each year on Earth, individuals receive 2.4 mSv of ionizing radiation (IR), which is easily tolerated by our cells. In space without the protection of the magnetosphere, astronauts are exposed to high levels of IR in the range of 50 to 2000 mSv which causes the accumulation of deleterious double strand breaks in DNA. Despite current research into methods of IR protection, many solutions such as radiation shield coating are expensive especially to transport to space.
Biological solutions such as the use of radioprotectors are also subjected to the sinusoidal pharmacokinetic problem resulting in the need for constant administration and the accumulation of waste. Certain naturally-occurring proteins and peptides, such as the modified Bowman-Birk Inhibitor (mBBI), have been found to confer protection against DNA damage in cells exposed to ionizing radiation. Previous studies have shown that BBI increases the survival rate of cells significantly when irradiated, by augmenting endogenous DNA repair mechanisms.
To solve the problem of creating a cost effective and continuous delivery system for IR protection, we have designed a transdermal patch for the delivery of mBBI through the skin. The patch hosts recombinant Bacillus subtilis that expresses a mBBI gene tagged with a transdermal tag that allows the peptide to travel through the skin layers, and into the bloodstream for dispersal throughout the body. The recombinant protein is also tagged with a secretory tag, which is cleaved off using endogenous proteases before delivery out to the skin. Using B. subtilis for the production of mBBI allows for constant delivery bypassing the sinusoidal pharmacokinetic problem. Its long term, continuous delivery will also create a cost effective solution. Ultimately, our transdermal delivery system allows for the administration biotherapeutics within an efficient and practical system, while still maintaining the flexibility of modularity.
Our Project
About us
The 2016 U of C Calgary iGEM team is a multidisciplinary team based out of the University of Calgary. Out team is made up of undergraduate students from all years of study form the broad backgrounds of Biology, Microbiology, Biomedical Sciences, Bioinformatics, and Chemical and Mechanical Engineering. We are based out of the O'Brien Centre Labs within the U of C's Health Science Centre.