Difference between revisions of "Team:DTU-Denmark"

Line 10: Line 10:
 
<body>
 
<body>
 
<!-- Team introduction -->
 
<!-- Team introduction -->
<div class="column full_size" align="justify" style="background-color:#f2f2f2" >
+
<div class="column full_size" align="justify">
<h2> Our Team </h2>
+
<h2 style="color:black"> Our Team </h2>
 
<p>We are DTU BioBuilders, the iGEM team of the Technical University of Denmark. We study biotechnolgy, bioinformatics, mathematical modelling, environmental engineering and biomedical engineering. Our team consists of 13 graduates and 3 undergraduates. In addition, we have 3 highschool students assisting us in the lab. Our team members come from Denmark, Germany, the Netherlands, Greece, China and Poland. This year we tackle substrate utilization in cell factories and this is our wiki:</p>
 
<p>We are DTU BioBuilders, the iGEM team of the Technical University of Denmark. We study biotechnolgy, bioinformatics, mathematical modelling, environmental engineering and biomedical engineering. Our team consists of 13 graduates and 3 undergraduates. In addition, we have 3 highschool students assisting us in the lab. Our team members come from Denmark, Germany, the Netherlands, Greece, China and Poland. This year we tackle substrate utilization in cell factories and this is our wiki:</p>
 
</div>  
 
</div>  
Line 24: Line 24:
 
<!-- The brainstorm -->
 
<!-- The brainstorm -->
 
<div class="column half_size" align="justify">
 
<div class="column half_size" align="justify">
<h5>The brainstorm</h5>
+
<h2>The brainstorm</h2>
  
 
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla. </p>
 
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla. </p>
Line 38: Line 38:
 
<div class="column half_size" align="justify">
 
<div class="column half_size" align="justify">
 
<div class="highlight">
 
<div class="highlight">
<h5> The problem: Waste! </h5>
+
<h2> The problem: Waste! </h2>
  
 
<p>In Denmark today, less than half the waste produced is recycled, which means that more than 3.5 million tons get burned off each year.</p>
 
<p>In Denmark today, less than half the waste produced is recycled, which means that more than 3.5 million tons get burned off each year.</p>
Line 53: Line 53:
 
<div class="column half_size" align="justify">
 
<div class="column half_size" align="justify">
 
<div class="highlight">
 
<div class="highlight">
<h5>Aim of our project </h5>
+
<h2>Aim of our project </h2>
  
 
<p>This project aims to develop the chassis for a versatile and efficient cell factory that
 
<p>This project aims to develop the chassis for a versatile and efficient cell factory that
Line 64: Line 64:
  
 
<div class="column half_size" align="justify">
 
<div class="column half_size" align="justify">
<h5> Our project: a molecular toolbox </h5>
+
<h2> Our project: a molecular toolbox </h2>
  
 
<p>The reason why <em>Y. lipolytica</em> has not been implemented in industry yet is the current lack of tools for genetic engineering.</p>
 
<p>The reason why <em>Y. lipolytica</em> has not been implemented in industry yet is the current lack of tools for genetic engineering.</p>
Line 74: Line 74:
 
<!--
 
<!--
 
<div class="column full_size" >
 
<div class="column full_size" >
<h5> Wiki template information </h5>
+
<h2> Wiki template information </h2>
 
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2016.igem.org/Judging/Pages_for_Awards/Instructions">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
 
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2016.igem.org/Judging/Pages_for_Awards/Instructions">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
  
Line 83: Line 83:
  
 
<div class="column half_size" >
 
<div class="column half_size" >
<h5> Editing your wiki </h5>
+
<h2> Editing your wiki </h2>
 
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>  
 
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>  
 
<p> <a href="https://2016.igem.org/wiki/index.php?title=Team:Example&action=edit"> Click here to edit this page! </a></p>
 
<p> <a href="https://2016.igem.org/wiki/index.php?title=Team:Example&action=edit"> Click here to edit this page! </a></p>

Revision as of 14:04, 28 June 2016

DTU biobuilders logo home botton

Our Team

We are DTU BioBuilders, the iGEM team of the Technical University of Denmark. We study biotechnolgy, bioinformatics, mathematical modelling, environmental engineering and biomedical engineering. Our team consists of 13 graduates and 3 undergraduates. In addition, we have 3 highschool students assisting us in the lab. Our team members come from Denmark, Germany, the Netherlands, Greece, China and Poland. This year we tackle substrate utilization in cell factories and this is our wiki:

The brainstorm

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla.

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc. Curabitur tortor. Pellentesque nibh. Aenean quam. In scelerisque sem at dolor. Maecenas mattis. Sed convallis tristique sem. Proin ut ligula vel nunc egestas porttitor. Morbi lectus risus, iaculis vel, suscipit quis, luctus non, massa. Fusce ac turpis quis ligula lacinia aliquet. Mauris ipsum.

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc. Curabitur tortor. Pellentesque nibh. Aenean quam. In scelerisque sem at dolor.

The problem: Waste!

In Denmark today, less than half the waste produced is recycled, which means that more than 3.5 million tons get burned off each year.

We have abundant waste streams from the industry such as glycerol from biodiesel production, byproducts from rapeseed production, used cooking oil and ordinary household waste.

Cell factories are becoming an increasing factor in the industry today, where different microorganisms are utilized to produce various compounds from therapeutics, organic acids, food additives etc. Currently however, the sustainability of these industrial processes is limited by the narrow substrate range of the organisms used. The most common feeds in use are simple carbohydrates such as glucose produced by enzymatic hydrolysis from edible plants such as maize, rice and wheat.

Aim of our project

This project aims to develop the chassis for a versatile and efficient cell factory that can transform abundant waste streams into valuable products using Yarrowia lipolytica and state of the art genetic editing techniques.

Our project: a molecular toolbox

The reason why Y. lipolytica has not been implemented in industry yet is the current lack of tools for genetic engineering.

In our project, we develop and test tools for Y. lipolytica. This set will standardized and based on CRISPR/Cas9-mediated genome editing. Y. lipolytica naturally comes with a high potential for biotechnological applications. By using our toolbox, anyone will be able to easily customize the genome to their needs.