Line 88: | Line 88: | ||
the optogenetics offers many advantages. It is fast as well as inexpensive and allows for excellent spatial, temporal and dose-dependent control. | the optogenetics offers many advantages. It is fast as well as inexpensive and allows for excellent spatial, temporal and dose-dependent control. | ||
</p> | </p> | ||
− | + | <!--tukej manjka extended text | |
− | + | There is a plethora of various light inducible systems available; however, not many are applicable to our purpose. Red light induced systems like Phy/PIF require an | |
− | + | additional phytochrome <x-ref>Zimmerman2016</x-ref>, while the UV light used to induce some systems like UVR <x-ref>Schmidt2015</x-ref> might be toxic to the cells and | |
− | + | the system can only be induced once <x-ref>Niopek2014</x-ref>. As a consequence of this we selected for the purpose of our iGEM project systems responsive to blue light. | |
− | + | Of these, FKF1/GIGANTEA displays slow association and dissociation rates <x-ref>Guntas2015</x-ref>, making it impractical for fast response purposes, while VVD displays | |
− | + | fast response, but is a homodimer <x-ref>Zhang2015</x-ref> (Zhang & Cui, 2015), making it unsuitable for successful heterodimerization of split enzymes. | |
− | + | --> | |
<p>Initially we decided to test the LOVpep/ePDZ system. This system has been used previously at iGEM, by <a href="https://2009.igem.org/Team:EPF-Lausanne/LOVTAP"> | <p>Initially we decided to test the LOVpep/ePDZ system. This system has been used previously at iGEM, by <a href="https://2009.igem.org/Team:EPF-Lausanne/LOVTAP"> | ||
EPF_Lausanne 2009</a>, <a href="https://2011.igem.org/Team:Rutgers/Etch_a_Sketch"> Rutgers 2011</a> and <a href="https://2012.igem.org/Team:Rutgers/BEAS">Rutgers 2012</a> | EPF_Lausanne 2009</a>, <a href="https://2011.igem.org/Team:Rutgers/Etch_a_Sketch"> Rutgers 2011</a> and <a href="https://2012.igem.org/Team:Rutgers/BEAS">Rutgers 2012</a> | ||
Line 101: | Line 101: | ||
signaling. | signaling. | ||
</p> | </p> | ||
− | + | <!--tukej manjka extended text | |
− | + | A photosensor has been prepared by engineering the AsLOV2 domain to contain a peptide epitope SSADTWV on the C-terminus of the Jα helix (LOVpep), binding an engineered | |
− | + | Erbin PDZ domain (ePDZ) upon blue light stimulation <x-ref> Stricklandetal.2012 </x-ref>. This system has already been used for iGEM projects ( | |
− | + | <a href="https://2014.igem.org/Team:Freiburg">Freiburg_2014</a>). | |
− | + | --> | |
<h4>Results</h4> | <h4>Results</h4> | ||
Line 142: | Line 142: | ||
<a href="https://2014.igem.org/Team:HNU_China/Project"> HNU_China 2014</a> and <a href="https://2015.igem.org/Team:ANU-Canberra">ANU_Canberra 2015</a> | <a href="https://2014.igem.org/Team:HNU_China/Project"> HNU_China 2014</a> and <a href="https://2015.igem.org/Team:ANU-Canberra">ANU_Canberra 2015</a> | ||
</p> | </p> | ||
+ | <!--tukej manjka extended text | ||
+ | CRY2 is a cryptochrome, originating from Arabidopsis thaliana and is a blue light–absorbing photosensor that binds a helix-loop-helix DNA-binding protein CIB1 in | ||
+ | its photoexcited state. In our system, we used the conserved N-terminal photolyase homology region of CRY2 (CRY2PHR; aa 1-498) that mediates light-responsiveness and | ||
+ | the truncated version of the CIB1 protein (CIBN; aa 1-170) without the helix-loop-helix region, which mediates DNA binding <x-ref> Kennedy2010</x-ref>. Dimerization of | ||
+ | CRY2PHR and CIBN can be induced by blue light illumination (460 nm), after which the interaction between CRY2 and CIB1 occurs on a millisecond timescale and can be | ||
+ | reversed within minutes by removing the stimulus. This light inducible system has already been implemented for light-dependent transcriptional activation with the Gal4 | ||
+ | transcription factor <x-ref> Kennedy2010</x-ref>, TALEs <x-ref>Konermann2013</x-ref> and the CRISPR/Cas9 system <x-ref>He2015</x-ref>. Another application of the system | ||
+ | is induction of whole-protein dimerization <x-ref>Wend2014</x-ref> or split protein dimerization <x-ref>Lin2012</x-ref>. | ||
+ | --> | ||
+ | <p>We adapted this system for the reconstitution of split luciferase to create a blue-light sensor, which enables easy characterization for further experiments. | ||
+ | The N- and C-terminal split fragments of the firefly luciferase were fused to the C-terminus of the CRY2PHR and the CIBN proteins, since this topology has previously | ||
+ | been shown to work with the Cre recombinase (<ref>3</ref>). | ||
+ | </p> | ||
+ | <div align = "right"> | ||
+ | <figure data-ref="3"> | ||
+ | <img class="ui medium image" src="https://static.igem.org/mediawiki/2016/d/d4/T--Slovenia--S.4.8.2.png"> | ||
+ | <figcaption><b>The CRY2PHR/CIBN light inducible system fused to split luciferase.</figcaption> | ||
+ | </figure> | ||
+ | </div> | ||
+ | <div style = "float:left;"> | ||
+ | <figure data-ref="4"> | ||
+ | <img onclick="resize(this);" class="ui medium image" src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--4.9.2.png" > | ||
+ | <figcaption><b>CRY2PHR/CIBN light inducible receptor linked with split luciferase repeatedly responded to light.</b><br/> | ||
+ | (A) Response to light depended on concentration of CIBN:cLuc. After induction the cells transfected with CIBN:cLuc and CRY2PHR:nLuc were lysed and bioluminescence was measured with dual luciferase assay. | ||
+ | (B) CRY2PHR light reporter was induced repeatedly. Following the addition of luciferin to the medium of the cells transfected with CIBN:cLuc and CRY2PHR:nLuc (ratio 1:3) were induced and left in the dark for indicated periods.</figcaption> | ||
+ | </figure> | ||
+ | </div> | ||
− | + | ||
− | + | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 18:35, 15 October 2016
nbsp;Light-depended mediator
Achivements
We designed and successfully tested three light inducible split proteases: CIBN/CRY2PHR light inducible split TEV protease, CIBN/CRY2PHR light inducible split PPVp and CIBN/CRY2PHR light inducible split TEVpE.
Introduction
In the recent years, light has been extensively explored as a trigger signal for activation of different biological processes. Small molecules and other chemical signals lack spatial resolution and their temporal resolution is limited by the time required for the cell permeation. In comparison, induction by light as developed by the optogenetics offers many advantages. It is fast as well as inexpensive and allows for excellent spatial, temporal and dose-dependent control.
Initially we decided to test the LOVpep/ePDZ system. This system has been used previously at iGEM, by EPF_Lausanne 2009, Rutgers 2011 and Rutgers 2012 and in mammalian cells by Freiburg_2014. AsLOV2 is a small photosensory domain from Avena sativa phototropin 1 with a C-terminal Jα helix. The Jα helix is caged in darkness but unfolds upon blue light (< 500 nm) photoexcitation, which is crucial for phototropin signaling.
Results
For initial testing and characterization of the system, we fused the LOVpep and ePDZb
We tested two orientations of ePDZ (ePDZ fused to split luciferase to N or C terminus) and ratios of the constructs ePDZ vs. cLuc:LOVpep were tested (2).
As the measured signal was the highest with split luciferase on the N-terminus of the ePDZ domain and a 1:3 ratio of LOVpep:ePDZ, all subsequent experiments were performed with this ratio. An important feature for real life applications is the ability of the system to be stimulated multiple times. Therefore, repeated association and dissociation was tested in the real time, by adding luciferin to the medium and measuring bioluminescence upon induction by light (Figure 4.9.1.C.). The system showed a delayed, but successful induction the first time, but the second induction was much weaker. The results indicated that the LOVpep/ePDZ system in this setup could not be induced more than once, so we decided to test another system.
As it has previously been shown on the example of split Cre recombinase
We adapted this system for the reconstitution of split luciferase to create a blue-light sensor, which enables easy characterization for further experiments. The N- and C-terminal split fragments of the firefly luciferase were fused to the C-terminus of the CRY2PHR and the CIBN proteins, since this topology has previously been shown to work with the Cre recombinase (3).