Difference between revisions of "Team:CU-Boulder/Description"

Line 48: Line 48:
 
UNDER CONSTRUCTION DONT LOOK AT ME!! </p>
 
UNDER CONSTRUCTION DONT LOOK AT ME!! </p>
  
<!-- EXAMPLE
+
 
 
<h3> Why we chose Bacterial Micro-Compartments </h3>
 
<h3> Why we chose Bacterial Micro-Compartments </h3>
<p class = "main">Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance.Future work will focus on the implementation of a multiconstruct system with EutS. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. Successful microscopy  has confirmed the viability of EutS and EutC-eGFP in E.Coli, but the laser used to excite eGFP may also cause conformational change of azo-benzene. Instead Neptune, another light activated protein that is excited at a much longer wavelength, will be used to visualize the formation and destruction of EutS microcompartments. Future work will focus on the implementation of a multiconstruct system with EutS, EuC-Neptune, and a third construct that creates tRNA’s to integrate azo-benzene into the EutS at locations we expect to see significant steric hinderance. </p>
+
<p class = "main">Bacterial microcompartments (BMCs) are endogenous platforms ideally suited for synthetic biology, as modular protein structures of relatively simple construction. Of the three known BMCs (carboxysomes, PDUs, and EUTs), EUTs were chosen as candidates for photo-mechanization due to their comparatively straightforward assembly. While carboxysomes and PDUs require precise ratios of coexpressed protein subunits to assemble, the ethanolamine utilizing microcompartments’ shell can form in vivo from a single subunit: EutS. Our research focused on the incorporation of azobenzene-sidechain noncanonical amino acids into the EutS protein, which was hypothesized to confer the nanocages with a photo-switchable function for assembly and disassembly. </p>
 +
 
 +
<!-- EXAMPLE
 
<figure style="float:right">
 
<figure style="float:right">
 
     <img src="https://static.igem.org/mediawiki/2016/e/e3/Jonah1.jpg" style="width:350px;height:458px;margin-right: 70px; padding: 10px 10px 10px 10px; float:right">
 
     <img src="https://static.igem.org/mediawiki/2016/e/e3/Jonah1.jpg" style="width:350px;height:458px;margin-right: 70px; padding: 10px 10px 10px 10px; float:right">

Revision as of 21:38, 15 October 2016

Project Description

UNDER CONSTRUCTION DONT LOOK AT ME!!

Why we chose Bacterial Micro-Compartments

Bacterial microcompartments (BMCs) are endogenous platforms ideally suited for synthetic biology, as modular protein structures of relatively simple construction. Of the three known BMCs (carboxysomes, PDUs, and EUTs), EUTs were chosen as candidates for photo-mechanization due to their comparatively straightforward assembly. While carboxysomes and PDUs require precise ratios of coexpressed protein subunits to assemble, the ethanolamine utilizing microcompartments’ shell can form in vivo from a single subunit: EutS. Our research focused on the incorporation of azobenzene-sidechain noncanonical amino acids into the EutS protein, which was hypothesized to confer the nanocages with a photo-switchable function for assembly and disassembly.