Line 77: | Line 77: | ||
<h1 class = "ui centered dividing header"><span class="section">nbsp;</span>Split proteases</h1> | <h1 class = "ui centered dividing header"><span class="section">nbsp;</span>Split proteases</h1> | ||
<div class = "ui segment"> | <div class = "ui segment"> | ||
− | |||
<p>The split protein system based on the inducible dimerization is an attractive method to regulate the protease activity. Wehr et al. <x-ref>Wehr2006</x-ref> described a | <p>The split protein system based on the inducible dimerization is an attractive method to regulate the protease activity. Wehr et al. <x-ref>Wehr2006</x-ref> described a | ||
split TEVp expressed as two functionally inactive fragments; the N-terminal (1 – 118 aa) and C-terminal (119 – 242 aa) protease fragments (referred to as cTEVp and nTEVp). | split TEVp expressed as two functionally inactive fragments; the N-terminal (1 – 118 aa) and C-terminal (119 – 242 aa) protease fragments (referred to as cTEVp and nTEVp). |
Revision as of 21:47, 15 October 2016
nbsp;Split proteases
The split protein system based on the inducible dimerization is an attractive method to regulate the protease activity. Wehr et al.
Our team hypothesized that the same inducible dimerization approach could also be used with TEVp homologues. We converted all of the tested orthogonal potyviral proteases
to split proteases by splitting them at positions corresponding to the position of the previously described split TEV protease. We selected three different types of
dimerization domains to induce the activity of the split proteases. The first pair of dimerization domains was the rapamycin responsive FKBP/FRB system