Difference between revisions of "Team:Aix-Marseille/Collaborations"

(Progamming code)
(Progamming code)
Line 21: Line 21:
  
 
===='''Progamming code'''====
 
===='''Progamming code'''====
[[link=#code_collab|Show code]]
 
  
<html>
+
Code de françois à ajouter
<style>
+
 
+
.code_collab{
+
    display:none;
+
}
+
 
+
.code_collab:target{
+
    display:block;
+
}
+
 
+
</style>
+
 
+
<div class="code_collab" id="code_collab">
+
<p>/*
+
* Program to run a model of bacteria in a fermenter
+
* with a 2 plasmid contention system.
+
*/
+
 
+
#include <stdio.h>
+
#include <stdlib.h>
+
#include <string.h>
+
#include <stdint.h>
+
#include <sys/time.h>
+
#include <gsl/gsl_rng.h>
+
#include <gsl/gsl_randist.h>
+
#include <gsl/gsl_sf.h>
+
#include <math.h>
+
 
+
#define MAX_POPULATION 2E6
+
 
+
// Model parameters
+
//
+
// Fermentation variables
+
double Sf    = 10.; // Substrate concentration (g/l) in feed solution
+
double S      =  0.19; // Current substrate concentration in fementer (g/l)
+
double V      =  0.01;  // Simulation volume with about 10^6 bacteria in ml
+
double Vtot  = 100.; // Volume of fermenter
+
double D      = 100.; // Dilution rate ml/hr
+
double alpha  = 3.4e-11;// growth yield g of substrate needed for 10^6 cells
+
double mumax  =  3.0; // maximum growth rate on substrate doublings per hour
+
double KS    =  0.1; // Monod constant for substrate (g/l)
+
    //
+
    // Plasmid 1 parameters
+
double KZ1    =100.0; // Growth inhibition constant
+
int    M1    =    1; // Hill constant for growth inhibition
+
double k1    = 20.0; // Plasmid replication rate in hr^-1
+
double K1    =  0.1; // Plasmid replication inhibition constant
+
double Z1max  = 10.0; // Maximum plsmid copy number
+
    //
+
    // Plasmid 2 parameters
+
double KZ2    =100.0; // Growth inhibition constant
+
int    M2    =    1; // Hill constant for growth inhibition
+
double k2    = 20.0; // Plasmid replication rate in hr^-1
+
double K2    =  0.1; // Plasmid replication inhibition constant
+
double Z2max  = 10.0; // Maximum plsmid copy number
+
    //
+
double sigma  =  5.0; // Division rate for large cells in hr^-1
+
    //
+
    // Contention system parameters
+
double ka1    =  2.0; // Toxicity parameter for toxin on plasmid 1
+
double ka2    =  1.0; // Toxicity parameter for toxin on plasmid 2
+
double kb    =  2.0; // Ratio of anti-toxin to toxin production rates
+
    //
+
    // Integrator parameters
+
size_t total  = 1e6;  // Total number of bacteria at start
+
double tmax  = 100.0; // Number of hours to simulate
+
double dt    = 0.05; // Timestep in hours
+
double t  = 0.0; // Current time
+
 
+
double michaelis(double Vmax, double Km, double S)
+
{
+
return Vmax * S /(Km+S);
+
}
+
 
+
gsl_rng *r;
+
 
+
void setup_seed()
+
{
+
const gsl_rng_type * T;
+
 
+
gsl_rng_env_setup();
+
T = gsl_rng_default;
+
+
struct timeval tv;
+
gettimeofday(&tv,0);
+
gsl_rng_default_seed = tv.tv_sec + tv.tv_usec;
+
r = gsl_rng_alloc(T);
+
}
+
 
+
struct bstate { double Z[3]; } *population = NULL;
+
size_t pop_size = 0;
+
 
+
void pop_alloc(void)
+
{
+
population = calloc(MAX_POPULATION, sizeof(struct bstate));
+
if (population == NULL) {
+
fprintf(stderr, "%s: alloc error\n", __func__);
+
exit(1);
+
}
+
}
+
 
+
void pop_append(struct bstate *p)
+
{
+
if (pop_size == MAX_POPULATION) {
+
fprintf(stderr, "%s: max population reached\n", __func__);
+
exit(1);
+
}
+
population[pop_size++] = *p;
+
}
+
 
+
/* pop_delete(i)
+
* overwrite population[i] with last element
+
* decrement pop_size
+
*/
+
void pop_delete(size_t i)
+
{
+
if (i >= pop_size) {
+
fprintf(stderr, "%s: out of range\n", __func__);
+
exit(1);
+
}
+
+
population[i] = population[--pop_size];
+
}
+
 
+
void printZ(double Z[])
+
{
+
for (int i = 0; i < 3; i++)
+
printf("%lf ", Z[i]);
+
printf("\n");
+
}
+
 
+
int main(void)
+
{
+
setup_seed();
+
 
+
/*
+
* Create a random population of bacteria
+
* in parameter space Z0(1-2),Z1(0-Z1max),Z2(0-Z2max)
+
*/
+
puts("Creating initial population");
+
pop_alloc();
+
+
double AvZ[3] = {0};
+
double growth = 0.0;
+
uintmax_t free = 0;
+
 
+
for (size_t i = 0; i < total; i++) {
+
struct bstate bacteria = {{
+
1+gsl_rng_uniform(r), // Random size [1-2]
+
Z1max, // Maximum number of plasmids
+
Z2max // for both types
+
}};
+
pop_append(&bacteria);
+
 
+
AvZ[0] += bacteria.Z[0];
+
AvZ[1] += bacteria.Z[1];
+
AvZ[2] += bacteria.Z[2];
+
}
+
 
+
puts("Starting integrator");
+
 
+
while (t < tmax) {
+
/*
+
* Display or output for visualization
+
* population (density on Z1/Z2 (all Z0 or Z0>2),
+
*/
+
printf("%lf %lf %lf %zu %ju %lf %lf %lf\n",
+
t, V, S, pop_size, free,
+
AvZ[0]/pop_size, AvZ[1]/pop_size, AvZ[2]/pop_size);
+
 
+
memset(AvZ, 0, sizeof(double[3])); // average values for parameters
+
growth = 0;
+
free = 0; // number of bacteria with no plasmids
+
+
size_t i = pop_size;
+
while (i-- != 0) {
+
double* Z = population[i].Z;
+
double cntrl  = gsl_rng_uniform(r) - (dt * D / Vtot);
+
if (cntrl < 0) {
+
pop_delete(i); // Bacterium washout
+
continue;
+
}
+
// Bacteria grow
+
AvZ[0] += Z[0];
+
AvZ[1] += Z[1];
+
AvZ[2] += Z[2];
+
+
if (Z[1] == 0.0 && Z[2] == 0.0)
+
free++;
+
 
+
double dotZ0  = michaelis( mumax, KS, S ); // Growth on substrate
+
dotZ0 *= michaelis( 1.0, gsl_sf_pow_int(Z[1], M1), KZ1 ); // Inhibition by plasmid 1
+
dotZ0 *= michaelis( 1.0, gsl_sf_pow_int(Z[2], M2), KZ2 ); // Inhibition by plasmid 2
+
double tox1 = gsl_sf_exp(-ka1*(Z[1]-kb*Z[2] ));
+
double tox2 = gsl_sf_exp(-ka2*(Z[2]-kb*Z[1] ));
+
dotZ0 *= fmin(1.0, tox1); // Inhibition by toxin 1
+
dotZ0 *= fmin(1.0, tox2); // Inhibition by toxin 2
+
+
double dotZ1 = (Z[1] < 1.0)? 0.0 : michaelis( k1, K1, Z[0] ) * (Z1max - Z[1]);
+
double dotZ2 = (Z[2] < 1.0)? 0.0 : michaelis( k2, K2, Z[0] ) * (Z2max - Z[2]);
+
 
+
Z[0] += dt * dotZ0; // Increment the internal state
+
Z[1] += dt * dotZ1;
+
Z[2] += dt * dotZ2;
+
+
growth += dt * dotZ0;
+
+
if (cntrl < (dt * sigma) && Z[0] > 2.0) {
+
struct bstate new_bacterium = {{
+
gsl_ran_gaussian_ziggurat(r, 0.05) + Z[0]/2.0,
+
gsl_ran_binomial(r, 0.5, Z[1]),
+
gsl_ran_binomial(r, 0.5, Z[2])
+
}};
+
for (int j = 0; j < 2; j++)
+
Z[j] -= new_bacterium.Z[j];
+
pop_append(&new_bacterium);
+
}
+
}
+
+
S += (D*dt*(Sf-S)/1000 - (growth*alpha*Vtot/V))/Vtot;
+
+
if (pop_size > 16e5) { // Too many bacteria
+
// Throw out half of then and reduce the volume
+
pop_size /= 2;
+
V      /= 2.0;
+
AvZ[0] /= 2.0;
+
AvZ[1] /= 2.0;
+
AvZ[2] /= 2.0;
+
}
+
if ((pop_size < 7e5) && (V < Vtot/2.0)) {
+
// Too few bacteria increase the volume
+
// and double the bacteria
+
memcpy(population + pop_size, population, pop_size);
+
pop_size *= 2;
+
V      *= 2.0;
+
AvZ[0] *= 2.0;
+
AvZ[1] *= 2.0;
+
AvZ[2] *= 2.0;
+
}
+
t += dt; // Increment time
+
}
+
// Output final population
+
return 0;
+
}</p></div>
+
</html>
+
  
 
===='''Results'''====
 
===='''Results'''====

Revision as of 09:39, 17 October 2016