Difference between revisions of "Team:Concordia/Notebook/Martin"

Line 23: Line 23:
 
#notebook-paper {
 
#notebook-paper {
 
   width:70%;
 
   width:70%;
   height:1109px;
+
   height:80%;
 
   background: linear-gradient(to bottom,white 29px,#00b0d7 1px);
 
   background: linear-gradient(to bottom,white 29px,#00b0d7 1px);
 
   margin:50px auto;
 
   margin:50px auto;
Line 31: Line 31:
 
   padding-left:75px;
 
   padding-left:75px;
 
   padding-right:75px;
 
   padding-right:75px;
 +
  padding-bottom:100px;
 
   overflow:hidden;
 
   overflow:hidden;
 
   border-radius:5px;
 
   border-radius:5px;
Line 54: Line 55:
 
<div style="background-color:#DCE1DE; overflow: hidden;">
 
<div style="background-color:#DCE1DE; overflow: hidden;">
 
<div style="overflow:hidden;">  
 
<div style="overflow:hidden;">  
 
  
 
<center>
 
<center>
Line 107: Line 107:
  
 
</center>
 
</center>
 +
<div id="notebook-paper">
 +
 +
<h1 style="line-height:2; font-family:times new roman,times,serif;">Nanoparticle Synthesis Laboratory Notebook:
 +
Martin Method (Chemical Synthesis)</h1>
 +
 +
<p><span _fck_bookmark="1" style="display: none;">&nbsp;</span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;">JUNE 14</span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="color: rgb(0, 0, 0); text-decoration: underline; white-space: pre-wrap; font-size: 20px; line-height: 1.38; background-color: transparent;">Experiment &amp; Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #1 </span></span></p>
 +
<br />
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">A) Perform Martin Method Synthesis Protocol:</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Perform all steps in BIOSAFETY CABINET</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">1. Measure 20 mL of ddH2O into 50 mL graduated cylinder and pour into 125mL Erlenmeyer flask</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">2. Place the falcon tube containing the remaining ddH2O on ice to keep it cold</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">3. Weigh out 1.96mg (0.00196g) of chloroauric acid trihydrate (HAuCl4) solid and transfer to a 1.5mL microfuge tube. Seal the tube rapidly to limit air exposure. </span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-CAUTION: oxidizes quickly - do not expose to air for longer than required. </span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-Do NOT use metal scoopula - use plastic or wood to transfer the solid. </span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-LIGHT SENSITIVE - use for short duration under light conditions</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">4. Quickly add the chloroauric acid to the ddH2O in the flask*</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">5. Add stir bar to flask and mix on plate to allow the solid to dissolve</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">6. Weigh out 1.47mg (0.00147g) of trisodium citrate dihydrate solid</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">7. Add the trisodium citrate dihydrate to the mixture in the flask with stirring</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">8. On ice, prepare 0.1M sodium borohydride (NaBH4) solution</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">9. Pipet 0.65 mL (650 uL) of cold ddH2O to a 1.5mL microfuge tube</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">10. Weigh out 2.46mg (0.00246g) of NaBH4</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">11. Put the measured NaBH4 into the microfuge tube and resuspend by pipetting until the solid is fully dissolved</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">12. Keep the solution cold on ice</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">13. Add 0.6mL (600uL) of cold 0.1M NaBH4 into the solution in the Erlenmeyer flask while stirring vigorously - NOTE: the solution should turn </span><span style="color: rgb(255, 0, 255); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">PINK</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;"> &nbsp;immediately - indicates particle formation</span></span></span></span></p>
 +
<br />
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Modifications:</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">- 2.01 mg of chloroauric acid was weighed out since it was difficult to measure 1.96 mg of chloroauric acid since it oxidizes quickly.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">- It was important to have equal molar ratio of chloroauric acid and its capping agent trisodium citrate. Thus, 1.5 mg of trisodium citrate was weighed out instead of 1.47 mg chloroauric acid.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">- The sodium borohydride solution wasn&rsquo;t as cold as it was supposed to be for high reducing power&hellip;</span></span></span></span></p>
 +
<p><br />
 +
&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">B) Results:</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;"> </span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Color formation: Gold nanoparticle solution turned WINE RED instead of PINK. It is important to note that colour can be subjective and can be affected by different conditions.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2de-6f14-7bc5-5317936000b9"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">UV-vis results: An absorption peak was expected at a range of 510nm-524nm more specifically 513&plusmn;3nm. An absorption peak was found within this range Figure 1.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 1: UV-vis of gold nanoparticles synthesized through Martin method batch #1</span></span></span></span></p>
 +
 +
 +
<center><img class="" src="<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/2/2d/T--Concordia--UV-vis_of_gold_nanoparticles_synthesized_through_Martin_Method_batch_1_nanoparticle_synthesis.jpg" alt="" width="70%" height=""></center>
 +
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;">JUNE 20</span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;">&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); text-decoration: underline; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Experiment &amp; Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #2</span></span></span></span></p>
 +
<p><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span style="color: rgb(0, 0, 0); font-weight: 700; white-space: pre-wrap; line-height: 1.2; background-color: transparent;">A) Perform Martin Method Synthesis Protocol:</span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Perform all steps in BIOSAFETY CABINET</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">1. Measure 60 mL of ddH2O into 100 mL graduated cylinder and pour into 125mL Erlenmeyer flask</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">2. Place the falcon tube containing the remaining ddH2O on ice to keep it cold</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">3. Weigh out 5.88mg (0.00588g) of chloroauric acid trihydrate (HAuCl4) solid and transfer to a 1.5mL microfuge tube. Seal the tube rapidly to limit air exposure</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-CAUTION: oxidizes quickly - do not expose to air for longer than required</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-Do NOT use metal scoopula - use plastic or wood to transfer the solid</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-LIGHT SENSITIVE - use for short duration under light conditions.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">4. Quickly add the chloroauric acid to the 60 mL ddH2O in the flask*</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">5. Add stir bar to flask and mix on plate to allow the solid to dissolve</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">6. Weigh out 4.41mg (0.00441g) of trisodium citrate dihydrate solid</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">7. Add the trisodium citrate dihydrate to the mixture in the flask with stirring</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">8. On ice, prepare 0.1M sodium borohydride (NaBH4) solution</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">9. Pipet 1.95 mL of cold ddH2O to a 2.0mL microfuge tube</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">10. Weigh out 7.39mg (0.00738g) of NaBH4</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">11. Put the measured NaBH4 into the microfuge tube and resuspend by pipetting until the solid is fully dissolved</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">12. Keep the solution cold on ice</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">13. Add 1.8mL of cold 0.1M NaBH4 into the solution in the Erlenmeyer flask while stirring vigorously </span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">- NOTE: the solution should turn </span><span style="color: rgb(255, 0, 255); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">PINK</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;"> &nbsp;immediately - indicates particle formation</span></span></span></span></p>
 +
<p>&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">B) Results:</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;"> </span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Color formation: Gold nanoparticle solution turned a LIGHT RUBY RED instead of PINK. Although this isn&rsquo;t exactly pink it appears light enough to considered a shade of pink.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">UV-vis results: An absorption peak was expected at a range of 510nm-524nm more specifically 513&plusmn;3nm. An absorption peak was found within this range Figure 2.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e0-c8bc-38da-05fc8b71483b"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 2: UV-vis of gold nanoparticles synthesized through Martin method batch #2</span></span></span></span></p>
 +
 +
<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/3/3a/T--Concordia--UV-vis_of_gold_nanoparticles_synthesized_through_the_Martin_method_batch_2.jpg" alt="" width="70%" height=""></center>
 +
 +
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;">JULY 4</span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;">&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e1-e38b-37ab-faa7645cd75d"><span style="color: rgb(0, 0, 0); text-decoration: underline; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #3</span></span></span></span></p>
 +
<p><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">A) Results:</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;"> Surprisingly Batch #1 had a perfect size range with 2-6 nm in size with an average size of 4 nm Figure 3. While batch #2 indicated a size range of about 100 nm! Figure 4. This has clearly indicated that the colour visual wasn&rsquo;t as conclusive but should be able to tell us that some form of nanoparticles was formed.</span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span id="docs-internal-guid-4986ee44-d2e1-e38b-37ab-faa7645cd75d"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 3: Hydrodynamic size determination of gold nanoparticles synthesized through the Martin method batch 1</span></span></span></span></p>
 +
 +
 +
<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/d/d4/T--Concordia--Hydrodynamic_size_determination_of_gold_nanoparticles_synthesized_through_the_Martin_method_batch_1_nanoparticle_synthesis.jpg" alt="" width="70%" height=""></center>
 +
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-size:200%;"><span style="font-family:times new roman,times,serif;"><span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 4: Hydrodynamic size determination of gold nanoparticles synthesized through the Martin method batch 2</span></span></span></span></p>
 +
 +
<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/2/2d/T--Concordia--Hydrodynamic_size_determination_of_gold_nanoparticles_synthesized_through_the_Martin_method_batch_2_nanoparticle_synthesis.jpg" alt="" width="70%" height=""></center>
 +
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;">JULY 13</span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;">&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); text-decoration: underline; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Experiment &amp; Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #4</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;">&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">A) Perform Martin Method Synthesis Protocol:</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Perform all steps in BIOSAFETY CABINET</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">1. Measure 20 mL of ddH2O into 50 mL graduated cylinder and pour into 125mL Erlenmeyer flask</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">2. Place the falcon tube containing the remaining ddH2O on ice to keep it cold</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">3. Weigh out 2.01 mg (0.00201g) of chloroauric acid trihydrate (HAuCl4) solid and transfer to a 1.5mL microfuge tube. Seal the tube rapidly to limit air exposure</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-CAUTION: oxidizes quickly - do not expose to air for longer than required</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-Do NOT use metal scoopula - use plastic or wood to transfer the solid</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-LIGHT SENSITIVE - use for short duration under light conditions</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">-Note: chloroauric acid is pricey - try not to be wasteful!</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">4. Quickly add the chloroauric acid to the ddH2O in the flask*</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">5. Add stir bar to flask and mix on plate to allow the solid to dissolve</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">6. Weigh out 1.5mg (0.00150g) of trisodium citrate dihydrate solid</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">7. Add the trisodium citrate dihydrate to the mixture in the flask with stirring</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">8. On ice, prepare 0.1M sodium borohydride (NaBH4) solution</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">9. Pipet 0.65 mL (650 uL) of cold ddH2O to a 1.5mL microfuge tube</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Weigh out 2.46mg (0.00246g) of NaBH4</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">10. Put the measured NaBH4 into the microfuge tube and resuspend by pipetting until the solid is fully dissolved. Keep the solution cold on ice</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">11. Add 0.6mL (600uL) of cold 0.1M NaBH4 into the solution in the Erlenmeyer flask while stirring vigorously - NOTE: the solution should turn </span><span style="color: rgb(192, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">WINE RED &nbsp;</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">immediately - indicates particle formation</span></span></span></span></p>
 +
<p>&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Modifications:</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">No modification was done to this newly edited protocol.</span></span></span></span></p>
 +
<p>&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">B) Results:</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Color formation: A gold nanoparticle colloid solution was obtained that was dark wine red colour.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">UV-vis results: An absorbance peak was expected at a range of 510nm-524nm (more specifically 513&plusmn;3nm). An absorption peak was found within this range according to our results. Indicating the successful synthesis of gold nanoparticles.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">DLS results: The dynamic light scattering indicated nanoparticles in the 1-10 nm range with most of them being 2-5 nm.</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e3-f8d9-b4bf-10cbef3a2783"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 5: UV-vis of gold nanoparticles synthesized through Martin method batch #3</span></span></span></span></p>
 +
 +
 +
<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/b/b5/T--Concordia--UV-vis_of_gold_nanoparticles_synthesized_through_Martin_Method_batch_3_nanoparticle_synthesis.jpg" alt="" width="70%" height=""></center>
 +
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;">JULY 21</span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;">&nbsp;</p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:0pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e5-1e54-0415-bc5279da18b2"><span style="color: rgb(0, 0, 0); text-decoration: underline; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #5</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e5-1e54-0415-bc5279da18b2"><span style="color: rgb(0, 0, 0); font-weight: 700; vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">A) Results:</span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;"> of batch#1 and batch#3 samples (since they passed the color formation, UV-vis, and DLS tests)</span></span></span></span></p>
 +
<p dir="ltr" style="line-height:2;margin-top:0pt;margin-bottom:8pt;"><span style="font-family:times new roman,times,serif;"><span style="font-size:200%;"><span id="docs-internal-guid-4986ee44-d2e5-1e54-0415-bc5279da18b2"><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">TEM photos: We have successfully synthesized gold nanoparticles that are 5nm using Martin method according to these images.</span></span></span></span></p>
 +
<p><span style="line-height:2; font-size:200%;"><span style="font-family:times new roman,times,serif;"><span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 6: TEM of martin synthesized gold nanoparticles batch 1.</span></span></span></span></p>
 +
 +
<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/0/05/T--Concordia--TEM_of_martin_synthesized_gold_nanoparticles_batch_1.jpg" alt="" width="70%" height=""></center>
 +
 +
<p><span style="line-height:2; font-size:200%;"><span style="font-family:times new roman,times,serif;"><span><span style="color: rgb(0, 0, 0); vertical-align: baseline; white-space: pre-wrap; background-color: transparent;">Figure 7: TEM of martin synthesized gold nanoparticles batch 3.</span></span></span></span></p>
 +
 +
 +
<center><img style="padding:30px;" src="https://static.igem.org/mediawiki/2016/6/67/T--Concordia--TEM_of_martin_synthesized_gold_nanoparticles_batch_3_nanoparticle_synthesis.jpg" alt="" width="70%" height=""></center>
 +
 +
 +
 +
 +
 +
  
  
<div id="notebook-paper">
 
  
    <h1>Fancy Title</h1>
 
  
<i><p style="font-size:175%; line-height:2;">Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc</p></i>
 
  
 
</div>
 
</div>
Line 133: Line 270:
 
<img style="margin:2%;" src="https://static.igem.org/mediawiki/2016/d/d5/Hya.png"  height="" width="6%">
 
<img style="margin:2%;" src="https://static.igem.org/mediawiki/2016/d/d5/Hya.png"  height="" width="6%">
 
</div>
 
</div>
 +
 
</html>
 
</html>

Revision as of 13:53, 17 October 2016

iGEM Concordia Wiki


Nanoparticle Synthesis Laboratory Notebook: Martin Method (Chemical Synthesis)

 

JUNE 14

Experiment & Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #1


A) Perform Martin Method Synthesis Protocol:

Perform all steps in BIOSAFETY CABINET

1. Measure 20 mL of ddH2O into 50 mL graduated cylinder and pour into 125mL Erlenmeyer flask

2. Place the falcon tube containing the remaining ddH2O on ice to keep it cold

3. Weigh out 1.96mg (0.00196g) of chloroauric acid trihydrate (HAuCl4) solid and transfer to a 1.5mL microfuge tube. Seal the tube rapidly to limit air exposure.

-CAUTION: oxidizes quickly - do not expose to air for longer than required.

-Do NOT use metal scoopula - use plastic or wood to transfer the solid.

-LIGHT SENSITIVE - use for short duration under light conditions

4. Quickly add the chloroauric acid to the ddH2O in the flask*

5. Add stir bar to flask and mix on plate to allow the solid to dissolve

6. Weigh out 1.47mg (0.00147g) of trisodium citrate dihydrate solid

7. Add the trisodium citrate dihydrate to the mixture in the flask with stirring

8. On ice, prepare 0.1M sodium borohydride (NaBH4) solution

9. Pipet 0.65 mL (650 uL) of cold ddH2O to a 1.5mL microfuge tube

10. Weigh out 2.46mg (0.00246g) of NaBH4

11. Put the measured NaBH4 into the microfuge tube and resuspend by pipetting until the solid is fully dissolved

12. Keep the solution cold on ice

13. Add 0.6mL (600uL) of cold 0.1M NaBH4 into the solution in the Erlenmeyer flask while stirring vigorously - NOTE: the solution should turn PINK  immediately - indicates particle formation


Modifications:

- 2.01 mg of chloroauric acid was weighed out since it was difficult to measure 1.96 mg of chloroauric acid since it oxidizes quickly.

- It was important to have equal molar ratio of chloroauric acid and its capping agent trisodium citrate. Thus, 1.5 mg of trisodium citrate was weighed out instead of 1.47 mg chloroauric acid.

- The sodium borohydride solution wasn’t as cold as it was supposed to be for high reducing power…


 

B) Results:

Color formation: Gold nanoparticle solution turned WINE RED instead of PINK. It is important to note that colour can be subjective and can be affected by different conditions.

UV-vis results: An absorption peak was expected at a range of 510nm-524nm more specifically 513±3nm. An absorption peak was found within this range Figure 1.

Figure 1: UV-vis of gold nanoparticles synthesized through Martin method batch #1

JUNE 20

 

Experiment & Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #2

A) Perform Martin Method Synthesis Protocol:

Perform all steps in BIOSAFETY CABINET

1. Measure 60 mL of ddH2O into 100 mL graduated cylinder and pour into 125mL Erlenmeyer flask

2. Place the falcon tube containing the remaining ddH2O on ice to keep it cold

3. Weigh out 5.88mg (0.00588g) of chloroauric acid trihydrate (HAuCl4) solid and transfer to a 1.5mL microfuge tube. Seal the tube rapidly to limit air exposure

-CAUTION: oxidizes quickly - do not expose to air for longer than required

-Do NOT use metal scoopula - use plastic or wood to transfer the solid

-LIGHT SENSITIVE - use for short duration under light conditions.

4. Quickly add the chloroauric acid to the 60 mL ddH2O in the flask*

5. Add stir bar to flask and mix on plate to allow the solid to dissolve

6. Weigh out 4.41mg (0.00441g) of trisodium citrate dihydrate solid

7. Add the trisodium citrate dihydrate to the mixture in the flask with stirring

8. On ice, prepare 0.1M sodium borohydride (NaBH4) solution

9. Pipet 1.95 mL of cold ddH2O to a 2.0mL microfuge tube

10. Weigh out 7.39mg (0.00738g) of NaBH4

11. Put the measured NaBH4 into the microfuge tube and resuspend by pipetting until the solid is fully dissolved

12. Keep the solution cold on ice

13. Add 1.8mL of cold 0.1M NaBH4 into the solution in the Erlenmeyer flask while stirring vigorously

- NOTE: the solution should turn PINK  immediately - indicates particle formation

 

B) Results:

Color formation: Gold nanoparticle solution turned a LIGHT RUBY RED instead of PINK. Although this isn’t exactly pink it appears light enough to considered a shade of pink.

UV-vis results: An absorption peak was expected at a range of 510nm-524nm more specifically 513±3nm. An absorption peak was found within this range Figure 2.

Figure 2: UV-vis of gold nanoparticles synthesized through Martin method batch #2

JULY 4

 

Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #3

A) Results: Surprisingly Batch #1 had a perfect size range with 2-6 nm in size with an average size of 4 nm Figure 3. While batch #2 indicated a size range of about 100 nm! Figure 4. This has clearly indicated that the colour visual wasn’t as conclusive but should be able to tell us that some form of nanoparticles was formed.

Figure 3: Hydrodynamic size determination of gold nanoparticles synthesized through the Martin method batch 1

Figure 4: Hydrodynamic size determination of gold nanoparticles synthesized through the Martin method batch 2

JULY 13

 

Experiment & Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #4

 

A) Perform Martin Method Synthesis Protocol:

Perform all steps in BIOSAFETY CABINET

1. Measure 20 mL of ddH2O into 50 mL graduated cylinder and pour into 125mL Erlenmeyer flask

2. Place the falcon tube containing the remaining ddH2O on ice to keep it cold

3. Weigh out 2.01 mg (0.00201g) of chloroauric acid trihydrate (HAuCl4) solid and transfer to a 1.5mL microfuge tube. Seal the tube rapidly to limit air exposure

-CAUTION: oxidizes quickly - do not expose to air for longer than required

-Do NOT use metal scoopula - use plastic or wood to transfer the solid

-LIGHT SENSITIVE - use for short duration under light conditions

-Note: chloroauric acid is pricey - try not to be wasteful!

4. Quickly add the chloroauric acid to the ddH2O in the flask*

5. Add stir bar to flask and mix on plate to allow the solid to dissolve

6. Weigh out 1.5mg (0.00150g) of trisodium citrate dihydrate solid

7. Add the trisodium citrate dihydrate to the mixture in the flask with stirring

8. On ice, prepare 0.1M sodium borohydride (NaBH4) solution

9. Pipet 0.65 mL (650 uL) of cold ddH2O to a 1.5mL microfuge tube

Weigh out 2.46mg (0.00246g) of NaBH4

10. Put the measured NaBH4 into the microfuge tube and resuspend by pipetting until the solid is fully dissolved. Keep the solution cold on ice

11. Add 0.6mL (600uL) of cold 0.1M NaBH4 into the solution in the Erlenmeyer flask while stirring vigorously - NOTE: the solution should turn WINE RED  immediately - indicates particle formation

 

Modifications:

No modification was done to this newly edited protocol.

 

B) Results:

Color formation: A gold nanoparticle colloid solution was obtained that was dark wine red colour.

UV-vis results: An absorbance peak was expected at a range of 510nm-524nm (more specifically 513±3nm). An absorption peak was found within this range according to our results. Indicating the successful synthesis of gold nanoparticles.

DLS results: The dynamic light scattering indicated nanoparticles in the 1-10 nm range with most of them being 2-5 nm.

Figure 5: UV-vis of gold nanoparticles synthesized through Martin method batch #3

JULY 21

 

Observation: Gold Nanoparticle Synthesis using Martin Method Optimization Trial #5

A) Results: of batch#1 and batch#3 samples (since they passed the color formation, UV-vis, and DLS tests)

TEM photos: We have successfully synthesized gold nanoparticles that are 5nm using Martin method according to these images.

Figure 6: TEM of martin synthesized gold nanoparticles batch 1.

Figure 7: TEM of martin synthesized gold nanoparticles batch 3.