ElenaFekete (Talk | contribs) |
ElenaFekete (Talk | contribs) |
||
Line 1,058: | Line 1,058: | ||
</li> | </li> | ||
<h2><span><u>Considering Human Use</u></span></h2> | <h2><span><u>Considering Human Use</u></span></h2> | ||
− | <li class="c0"><span>Using a patch gives the user the freedom to | + | <li class="c0"><span>Using a patch is preferable to many other drug delivery systems. A patch gives the user the freedom to continue a course of medications even with an upset stomach, as the drug will not need to go through the digestive system. It is less invasive than an implant or injection, and delivers the therapeutic agent continuously, meaning the dosage is always above the threshold required for a therapeutic effect, and the user does not need to worry about taking their medication at the same time each day.</span> |
</li> | </li> | ||
+ | <h4> Possible Problems with the patch</h4> | ||
<li class="c0"><span>Accidental breakage of the patch while attached to skin may cause infections if not disinfected properly.</span> | <li class="c0"><span>Accidental breakage of the patch while attached to skin may cause infections if not disinfected properly.</span> | ||
</li> | </li> |
Revision as of 01:14, 18 October 2016
Safety
Safety Considerations in the Lab
How we prepared for lab work
How we prepared for lab work
All Principal Investigators, mentors, and undergraduate researchers were required to complete lab safety training and safety courses developed by the University of Calgary's Environment Health and Safety (EHS) services prior to working in the lab. These mandatory safety training courses included courses on occupational health and safety, laboratory safety, hazard assessment, incident reporting and investigation, spill response, biosafety, bloodborne pathogens, and an updated versions of the WHMIS course. The courses cover biological containment protocols, handling of hazardous materials such as liquid nitrogen, and disposal of waste, as well as standard safety and laboratory practices. All required us to take a test following each course, which certified safe lab work under the EHS Guidelines. All team members, advisors, and mentors received credit for each course and training program listed, and supervisors were present in the lab at all times to oversee undergraduate work.
The University of Calgary has a university-wide Biosafety Committee, whose guidelines for safe biological laboratory practices were adhered to throughout the project. The team’s lab benches and experimental plans were assessed and deemed safe to proceed with by this Biosafety Committee. The Univerity's Environment Health and Safety (EHS) services provided additional training for individuals working with radiation and irradiated cells.
Our project utilized Bacillus subtilis and a commonly used lab-strain of Escherichia coli, TOP10. Both are non-pathogenic and non-infectious, and are classified as Biosafety Level 1 organisms (BSL-1). Therefore, these organisms posed no significant risk to researchers. Since the BSL-1 cells (E. coli and B. subtilis) have GRAS labelling, the main cloning component of out project did not require ethics approval by review boards. Some team members worked with HCT116 and 1BR3 primary cell lines, which are human colon carcinoma and human skin fibroblast cell lines and are classified as Biosafety Level 2 (BSL-2).The cell lines were received from completely anonymous donors. We handled these cell lines at containment level 2 in accordance with the Bloodborne Pathogens Standard and Biosafety Committee guidelines.
Safety Considerations for the Device
Structure of the Patch
Choosing Patch Materials
Considering Human Use
Possible Problems with the patch
Containment
Future Considerations for Patch Design
If we can determine a better membrane that prevents the diffusion of the bacteria, we can use a two layer semi permeable system where the first layer prevents the diffusion of the bacteria and a second layer which further filters BBI for diffusion.
Safe disposal:
Safety Considerations of Biobrick Parts
Future Considerations
We would engineer inducible kill switches that could eradicate the bacteria if need be. Additionally, integrating mBBI in various essential genes required for amino acid synthesis could provide more opportunities for auxotrophy, increasing the safety of using B. subtilis in the device.
Safety Forms