Line 76: | Line 76: | ||
</p> | </p> | ||
<p class="black"> | <p class="black"> | ||
− | This year, our project is based on the heterologous expression of spider silk protein in the microalgae <i> Chlamydomonas reinhardtii</i>. We named it AlgAranha, a combination of the portuguese words for algae and spider. Besides the goal of producing enzybiotics and monomers of spider silk, we aim to achieve an improvement of <i> Chlamydomonas </i> as a synbio chassis.<!--The project started when we looked at the problem of growing antibiotic resistance and started to think in ways to tackle it. We specially focused on injury related infections, for example in the case of burn victms. We devised the creation of an antibiotic patch, combining the physical properties of spider silk with antibiotic enzymes (enzybiotics). We intend to express both the spider silk and chimeric enzybiotic proteins with spider silk motifs in <i> Chlamydomonas </i> and polymerize then together to form the product of interest. We hope to acomplish, besides the final goal of patch development, improvement of <i> Chlamydomonas </i> as a synbio chassis and analysis of its capability of producing enzybiotics and monomers of spider silk.--> Moreover, the team is | + | This year, our project is based on the heterologous expression of spider silk protein in the microalgae <i> Chlamydomonas reinhardtii</i>. We named it AlgAranha, a combination of the portuguese words for algae and spider. Besides the goal of producing enzybiotics and monomers of spider silk, we aim to achieve an improvement of <i> Chlamydomonas </i> as a synbio chassis.<!--The project started when we looked at the problem of growing antibiotic resistance and started to think in ways to tackle it. We specially focused on injury related infections, for example in the case of burn victms. We devised the creation of an antibiotic patch, combining the physical properties of spider silk with antibiotic enzymes (enzybiotics). We intend to express both the spider silk and chimeric enzybiotic proteins with spider silk motifs in <i> Chlamydomonas </i> and polymerize then together to form the product of interest. We hope to acomplish, besides the final goal of patch development, improvement of <i> Chlamydomonas </i> as a synbio chassis and analysis of its capability of producing enzybiotics and monomers of spider silk.--> Moreover, the team is involved with open hardware developement and promotion and synthetic biology popularization, helping to promote the synthetic biology culture in Brazil, raising awareness and engaging the public. </p> |
</div> | </div> | ||
</div> | </div> |
Revision as of 13:26, 18 October 2016
AlgAranha Team USP-UNIFESP BRASIL
We are a multidisciplinary team from São Paulo, Brazil, with students of architecture, biology, biomedical sciences, social sciences and more, from the universities USP, UNESP and UNIFESP. The team originated from the synthetic biology club (SynBio Brasil),which is an independent group that works promoting synbio and open science awareness and education. Since 2012, different members of the club have organized themselves to take part in iGEM competition.
This year, our project is based on the heterologous expression of spider silk protein in the microalgae Chlamydomonas reinhardtii. We named it AlgAranha, a combination of the portuguese words for algae and spider. Besides the goal of producing enzybiotics and monomers of spider silk, we aim to achieve an improvement of Chlamydomonas as a synbio chassis. Moreover, the team is involved with open hardware developement and promotion and synthetic biology popularization, helping to promote the synthetic biology culture in Brazil, raising awareness and engaging the public.