Difference between revisions of "Team:Slovenia/Mechanosensing/Overview"

 
(24 intermediate revisions by 6 users not shown)
Line 7: Line 7:
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
 
             src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
     <link rel="stylesheet" type="text/css" href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
+
     <link rel="stylesheet" type="text/css"
     <script type="text/javascript" src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
+
          href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
 +
     <script type="text/javascript"
 +
            src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
             src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
<!-- MathJax (LaTeX for the web) -->
+
    <!-- MathJax (LaTeX for the web) -->
 
     <script type="text/x-mathjax-config">
 
     <script type="text/x-mathjax-config">
 
         MathJax.Hub.Config({
 
         MathJax.Hub.Config({
Line 34: Line 36:
 
             SVG: { linebreaks: { automatic: true, width: "200% container" }}
 
             SVG: { linebreaks: { automatic: true, width: "200% container" }}
 
         });
 
         });
 +
 +
   
 
     </script>
 
     </script>
<script type="text/javascript" async
+
    <script type="text/javascript" async
 
             src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
             src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
     </script>
 
     </script>
 
</head>
 
</head>
 
<body>
 
<body>
+
 
+
 
<div id="example">
+
<div id="example">
<div class="pusher">
+
    <div class="pusher">
<div class="full height">
+
        <div class="full height">
<div class="banana">
+
            <div class="banana">
<a href = "//2016.igem.org/Team:Slovenia">
+
                <a href="//2016.igem.org/Team:Slovenia">
<img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
+
                    <img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
</a>
+
                </a>
<div class="ui vertical sticky text menu">
+
                <div class="ui vertical sticky text menu">
<a class="item" href="#intro" style="margin-left: 10%">
+
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Idea/Solution">
<i class="selected radio icon"></i>
+
                        <i class="chevron circle left icon"></i>
<b>Project</b>
+
                        <b>Solutions</b>
</a>
+
                    </a>
<a class="item" href="#achievements" style="margin-left: 10%">
+
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Mechanosensing/Overview" style="color:#DB2828;">
<i class="selected radio icon"></i>
+
                        <i class="selected radio icon"></i>
<b>Achievements</b>
+
                        <b>Mechanosensing</b>
</a>
+
                    </a>
<a class="item" href="#requirements" style="margin-left: 10%">
+
                    <a class="item" href="#over" style="margin-left: 10%">
<i class="selected radio icon"></i>
+
                        <i class="selected radio icon"></i>
<b>Medal requirements</b>
+
                        <b>Overview</b>
</a>
+
                    </a>
<a class="item" href="idea">
+
                    <a class="item" href="#mot" style="margin-left: 10%">
<i class="chevron circle right icon"></i>
+
                        <i class="selected radio icon"></i>
<b>Idea</b>
+
                        <b>Motivation</b>
</a>
+
                    </a>
+
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Mechanosensing/Mechanosensitive_channels">
</div>
+
                        <i class="chevron circle right icon"></i>
+
                        <b>Mechanosensitive channels</b>
</div>
+
                    </a>
<div class="article" id="context">
+
 
<!-- menu goes here -->
+
                </div>
<!-- content goes here -->
+
 
<div>
+
            </div>
<div class="main ui citing justified container"><h1 class = "ui centered dividing header"><span class="section">&nbsp;</span></h1>
+
            <div class="article" id="context">
+
                <!-- menu goes here -->
<div class = "ui segment" style = "background-color: #ebc7c7; ">
+
                <!-- content goes here -->
<p><b><ul>
+
                <div>
<li>We successfully engineered mechano-responsive cells by expressing mechanosensitive ion channels MscS and P3:FAStm:TRPC1 in mammalian cells.
+
                    <div class="main ui citing justified container"><h1 class="ui centered dividing header"><span
<li>We demonstrated that the localization of mechanosensitive channel TRPC1 to plasma membrane can be improved by fusing it with the segments of the FAS, including transmembrane domain.
+
                            class="section colorize">&nbsp;</span></h1>
<li>Addition of gas-filled lipid microbubbles increased the sensitivity of mammalian cells to ultrasound.
+
 
<li>We demonstrated for the first time that gas vesicle-forming proteins are expressed in a human cell line, are not toxic and improve the sensitivity to of cells mechanical stimuli.  
+
                        <div class="ui segment" style="background-color: #ebc7c7; ">
<li>We developed a custom-made ultrasound stimulation device (Moduson), suitable for use in different experimental setups that require ultrasound stimulation of cells.  
+
                            <h3 class="ui left dividing header"><span id="over" class="section colorize">&nbsp;</span>Summary of
<li>We developed new graphical analysis software that enables fast analysis of fluorescent microscopy data to quantify the response to ultrasound stimulation.  
+
                                the main results on mechanosensing</h3>
<li>A new split calcium sensing/reporting system was designed that is able to report the increase of the cytosolic calcium ions induced by mechanoreceptor stimulation by emitted light.  
+
                            <p><b>
</ul></b></p>
+
                                <ul>
</div>
+
                                    <li>We successfully engineered mechano-responsive cells by expressing
<div class = "ui segment">
+
                                        mechanosensitive ion channels MscS and P3:FAStm:TRPC1 in mammalian cells.
<p>Cells interact with other cells and environment in various ways in order to appropriately respond to the microenvironment changes. One important extracellular physical
+
                                    <li>Localization of mechanosensitive channel TRPC1 on the plasma membrane was
signal are mechanical forces and adaptation upon mechanical stimuli is crucial for regulating the cell volume, signalization, growth, cell to cell interactions and  
+
                                        demonstrated and improved by fusing it with segments of FAS receptor, including
overall survival.
+
                                        the transmembrane domain.
</p>  
+
                                    <li>Addition of gas-filled lipid microbubbles increased the sensitivity of mammalian
<p>Mechanical forces such as changes in osmolality, fluid flow, gravity or direct pressure result in changes in tension of the phospholipid bilayer and arrangement of  
+
                                        cells to ultrasound.
the cellular cytoskeleton. The detailed mechanism of mechanosensing is not known, however most mechanosensitive receptors respond to mechanical stimuli through opening  
+
                                    <li>We demonstrated for the first time that gas vesicle-forming proteins are
of the channel pore and allowing calcium ions to enter the cell <x-ref>Zheng2013</x-ref>. Role of the membrane composition has been shown for bacterial channels, however
+
                                        expressed in a human cell line, are not toxic and improve the sensitivity of
cytoskeleton apparently plays an important role as several mechanosensitive channels comprise domains that can interact with cytoskeleton.
+
                                        cells to mechanical stimuli.
</p>
+
                                    <li>A custom-made ultrasound stimulation device (Moduson), suitable for use in
<div style = "clear:left;">
+
                                        different experimental setups that require ultrasound stimulation of cells, was
<figure data-ref="1">
+
                                        developed.
<img class="ui medium image" src="https://static.igem.org/mediawiki/2016/8/88/T--Slovenia--3.2.1.png" >
+
                                    <li>New graphical analysis software that enables fast analysis of fluorescent
<figcaption><b>Proposed gating mechanisms of mechanosensitive channels (adapted from  Christensen & Corey <x-ref>Christensen2007</x-ref>).</b></figcaption>
+
                                        microscopy data was also developed to quantify the response to ultrasound
</figure>
+
                                        stimulation.
</div>
+
                                    <li>A new split calcium sensing/reporting system was designed that is able to report,
<p>This mechanism, serves as a force-sensing system <x-ref>Haswell2011, Zheng2013</x-ref>. Furthermore, it has already been shown that living organisms can detect
+
                                        by emitting light, the increase of the cytosolic calcium ions induced by
and respond to mechanical stress generated by ultrasound, which represents an external stimulus with many potential applications <x-ref>Ibsen2015</x-ref>. Ultrasound
+
                                        mechanoreceptor stimulation.
offers remarkable advantages over other external stimuli used for targeted cell stimulation. In our project we aimed to explore the potential of mechanosensors and to  
+
 
improve the sensitivity of cells to mechanical stimulation with the idea of designing ultrasound-responsive devices.
+
                                </ul>
</p>
+
                            </b></p>
+
                        </div>
+
                        <div class="ui segment">
+
                            <div><span id="mot" class="section colorize">&nbsp;</span></div>
</div>
+
                            <p>Cells interact with other cells and the environment in various ways in order to
</div>
+
                                appropriately respond to microenvironment changes. An important extracellular physical
</div>
+
                                signal is represented
+
                                by mechanical forces and adaptation upon mechanical stimuli is crucial for regulating
+
                                the cell volume, signalization, growth, cell to cell interactions and overall
</div>
+
                                survival.</p>
</div>
+
                            <p>Mechanical forces such as changes in osmolality, fluid flow, gravity or direct pressure
</div>
+
                                result in changes in tension of the phospholipid bilayer, arrangement of the
</div>
+
                                cytoskeleton
 +
                                and opening of cation-permeable channels.</p>
 +
 
 +
                            <p>This mechanism serves as a force-sensing system
 +
                                <x-ref>Haswell2011, Zheng2013</x-ref>
 +
                                . Furthermore, it has already been shown that living organisms can detect
 +
                                and respond to mechanical stress generated by ultrasound, which represents an external
 +
                                stimulus with many potential applications
 +
                                <x-ref>Ibsen2015</x-ref>
 +
                                . Ultrasound
 +
                                offers remarkable advantages over other external stimuli used for targeted cell
 +
                                stimulation. In our project we aimed to explore the potential of mechanosensors and to
 +
                                improve the sensitivity of cells to mechanical stimulation with the idea of designing
 +
                                ultrasound-responsive devices.
 +
                            </p>
 +
                        </div>
 +
                        <h3 class="ui left dividing header"><span id="ref-title" class="section colorize">&nbsp;</span>References
 +
                        </h3>
 +
                        <div class="ui segment citing" id="references"></div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</div>
 +
<div>
 +
    <a href="//igem.org/Main_Page">
 +
        <img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%"
 +
            style="position: fixed; bottom:0%; right:1%;">
 +
    </a>
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 13:12, 19 October 2016

Overview

 

 Summary of the main results on mechanosensing

  • We successfully engineered mechano-responsive cells by expressing mechanosensitive ion channels MscS and P3:FAStm:TRPC1 in mammalian cells.
  • Localization of mechanosensitive channel TRPC1 on the plasma membrane was demonstrated and improved by fusing it with segments of FAS receptor, including the transmembrane domain.
  • Addition of gas-filled lipid microbubbles increased the sensitivity of mammalian cells to ultrasound.
  • We demonstrated for the first time that gas vesicle-forming proteins are expressed in a human cell line, are not toxic and improve the sensitivity of cells to mechanical stimuli.
  • A custom-made ultrasound stimulation device (Moduson), suitable for use in different experimental setups that require ultrasound stimulation of cells, was developed.
  • New graphical analysis software that enables fast analysis of fluorescent microscopy data was also developed to quantify the response to ultrasound stimulation.
  • A new split calcium sensing/reporting system was designed that is able to report, by emitting light, the increase of the cytosolic calcium ions induced by mechanoreceptor stimulation.

 

Cells interact with other cells and the environment in various ways in order to appropriately respond to microenvironment changes. An important extracellular physical signal is represented by mechanical forces and adaptation upon mechanical stimuli is crucial for regulating the cell volume, signalization, growth, cell to cell interactions and overall survival.

Mechanical forces such as changes in osmolality, fluid flow, gravity or direct pressure result in changes in tension of the phospholipid bilayer, arrangement of the cytoskeleton and opening of cation-permeable channels.

This mechanism serves as a force-sensing system Haswell2011, Zheng2013 . Furthermore, it has already been shown that living organisms can detect and respond to mechanical stress generated by ultrasound, which represents an external stimulus with many potential applications Ibsen2015 . Ultrasound offers remarkable advantages over other external stimuli used for targeted cell stimulation. In our project we aimed to explore the potential of mechanosensors and to improve the sensitivity of cells to mechanical stimulation with the idea of designing ultrasound-responsive devices.

 References