Difference between revisions of "Team:Exeter/Collaborations"

Line 724: Line 724:
 
         <img src="https://static.igem.org/mediawiki/2016/e/e8/T--Exeter--Template_Colab_setup.jpg"  
 
         <img src="https://static.igem.org/mediawiki/2016/e/e8/T--Exeter--Template_Colab_setup.jpg"  
 
style="max-width:100%;margin:auto;display:block;">
 
style="max-width:100%;margin:auto;display:block;">
             <span class="caption">Fig. 1 - A picture of the experimental apparatus used for finding conductivitys.</span>
+
             <span class="caption">Figure 1a - A picture of the experimental apparatus used for finding conductivitys.</span>
 
<br>
 
<br>
 
<br>
 
<br>
Line 731: Line 731:
 
         <img src="https://static.igem.org/mediawiki/2016/2/23/T--Exeter--Colab_2.jpg"  
 
         <img src="https://static.igem.org/mediawiki/2016/2/23/T--Exeter--Colab_2.jpg"  
 
style="max-width:100%;margin:auto;display:block;">
 
style="max-width:100%;margin:auto;display:block;">
             <span class="caption">Fig. 2 - A close up of the experiment showing the wiring inside the falcon tube.</span>
+
             <span class="caption">Figure 1b - A close up of the experiment showing the wiring inside the falcon tube.</span>
 
<br>
 
<br>
 
<br>
 
<br>
Line 737: Line 737:
 
</div>                 
 
</div>                 
  
<img src="https://static.igem.org/mediawiki/2016/4/40/Thermal_conductivity_rep_plot_EXE2016.png" style="float:right; width:33vw; height:50vh;">
+
 
  
 
                 <p id="pp">Nagasaka and Nagashima noted that wire insulation has negligible impact on the measurement of the thermal conductivity of saline solutions (Nagasaka and Nagashima 1981) and thus can be described by the equation: $$ \lambda = \frac{Q}{4\pi\Delta T}\ \ln{(t)}$$ where $Q$ is the power per unit length of the wire, $Q = \frac{(I \times V)}{Length}$, and $\Delta T$ is the change in temperature over time $t$. A linear fit of a $T$ vs. $ln(t)$ plot following only the reading from the broth thermocouple will yield the conductivity (Fig. 2).</p>
 
                 <p id="pp">Nagasaka and Nagashima noted that wire insulation has negligible impact on the measurement of the thermal conductivity of saline solutions (Nagasaka and Nagashima 1981) and thus can be described by the equation: $$ \lambda = \frac{Q}{4\pi\Delta T}\ \ln{(t)}$$ where $Q$ is the power per unit length of the wire, $Q = \frac{(I \times V)}{Length}$, and $\Delta T$ is the change in temperature over time $t$. A linear fit of a $T$ vs. $ln(t)$ plot following only the reading from the broth thermocouple will yield the conductivity (Fig. 2).</p>
Line 743: Line 743:
 
                 <p id="pp">We found the thermal conductivity of LB and M9 to be similar to that of water, at 605 $\pm$ 20 $\frac{mW}{Km}\text{ }$ and 570 $\pm$ 30 $\frac{mW}{Km}\text{ }$ respectively.</p>
 
                 <p id="pp">We found the thermal conductivity of LB and M9 to be similar to that of water, at 605 $\pm$ 20 $\frac{mW}{Km}\text{ }$ and 570 $\pm$ 30 $\frac{mW}{Km}\text{ }$ respectively.</p>
  
 +
 +
<div class="row">
 +
    <div class="col-xs-6" style="padding:5px 2% 5px 10%;margin:0;">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/40/Thermal_conductivity_rep_plot_EXE2016.png" style="max-width:100%;margin:auto;display:block;">
 +
            <span class="caption">Figure 2 - A picture of the experimental apparatus used for finding conductivitys.</span>
 +
<br>
 +
<br>
 +
    </div>
 +
</div>
  
 
<h5>References</h5>
 
<h5>References</h5>

Revision as of 16:09, 19 October 2016