Difference between revisions of "Team:Slovenia/ModelLogic"

 
(59 intermediate revisions by 6 users not shown)
Line 42: Line 42:
 
                 </a>
 
                 </a>
 
                 <div class="ui vertical sticky text menu">
 
                 <div class="ui vertical sticky text menu">
 +
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Software">
 +
                        <i class="chevron circle left icon"></i>
 +
                        <b>CaPTURE</b>
 +
                    </a>
 +
                    <a class="item" href="" style="color:#DB2828;">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>Modeling logic gates</b></a>
 +
                    <a class="item" href="#achieve" style="margin-left: 10%">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>Achievements</b>
 +
                    </a>
 
                     <a class="item" href="#intro" style="margin-left: 10%">
 
                     <a class="item" href="#intro" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Logic gates modelling</b>
+
                         <b>Introduction</b>
 
                     </a>
 
                     </a>
 
                     <a class="item" href="#model" style="margin-left: 10%">
 
                     <a class="item" href="#model" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Deterministic modelling</b>
+
                         <b>Deterministic modeling</b>
 
                     </a>
 
                     </a>
 
                     <a class="item" href="#results" style="margin-left: 10%">
 
                     <a class="item" href="#results" style="margin-left: 10%">
Line 54: Line 65:
 
                         <b>Results</b>
 
                         <b>Results</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#references" style="margin-left: 10%">
+
                     <a class="item" href="//2016.igem.org/Team:Slovenia/CoiledCoilInteraction">
                        <i class="selected radio icon"></i>
+
                        <b>References</b>
+
                    </a>
+
                    <a class="item" href="https://2016.igem.org/Team:Slovenia/CoiledCoilInteraction">
+
 
                         <i class="chevron circle right icon"></i>
 
                         <i class="chevron circle right icon"></i>
 
                         <b>Coiled Coil interaction model</b>
 
                         <b>Coiled Coil interaction model</b>
Line 68: Line 75:
 
                 <!-- content goes here -->
 
                 <!-- content goes here -->
 
                 <div class="main ui citing justified container">
 
                 <div class="main ui citing justified container">
                     <h1><span id="intro" class="section"> &nbsp; </span>Modeling logic gates</h1>
+
                     <div>
                    <div class="ui segment">
+
                        <h1><span id="achieve" class="section colorize"> &nbsp; </span>Modeling logic gates</h1>
                        <p>
+
                        <div class="ui segment" style="background-color: #ebc7c7; ">
                             Engineering and designing biological circuits constitute a central core of synthetic
+
                            <p><b>
                            biology. In
+
                                <ul>
                            the context of our
+
<li> Fourteen coiled-coil-based logic operations were designed and modeled in order to function <i>in vivo</i>.
                            iGEM
+
                                    <li> Fast response was obtained upon reconstitution of light inducible proteases used as input.
                            project, one the purpose was to create, tune and regulate novel pathways in living cells
+
                                </ul>
                            using a
+
                             </b></p>
                            fast-relay system.
+
                        </div>
                            The
+
</div>
                            <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Orthogonality">toolset of
+
                        <div class="ui segment">
                                orthogonal proteases</a>
+
<h4><span id="intro" class="section colorize"> &nbsp; </span></h4>
                            that we developed worked as input for <a
+
                            <p>
                                href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic
+
                                Engineering and designing biological circuits constitute a central core of synthetic
                            function in mammalian cells</a>. Therefore, here we propose schemes for implementation of
+
                                biology. In
                            all 16
+
                                the context of our
                            two input
+
                                iGEM
                            binary logic functions based on a protein-protein interaction (coiled coil) and proteolysis
+
                                project, one of the challenges was to create, tune and regulate novel pathways in living
                            system in cells. Designed logic gates based on
+
                                cells
                            protein-protein interaction are
+
                                using a
                            expected to have a shorter time delay compared to their analogues based on genetic
+
                                fast-relay system.
                            regulatory
+
                                The
                            networks
+
                                <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Orthogonality">toolset of
                            <x-ref>Gaber:2014, Kiani:2014</x-ref>
+
                                    orthogonal proteases</a>
                             .
+
                                that we developed worked as input for <a
                        </p>
+
                                    href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic
 +
                                function in mammalian cells</a>. Therefore, here we propose schemes for implementation
 +
                                of
 +
                                all 14 non-trivial
 +
                                two input
 +
                                binary logic functions based on a protein-protein interaction (coiled coil) and
 +
                                proteolysis
 +
                                system in cells (<ref>fig:logicfunctions</ref>). Designed logic gates based on
 +
                                protein-protein interaction are
 +
                                expected to have a shorter time delay compared to their analogues based on transcription
 +
                                activation
 +
                                <x-ref>Gaber:2014, Kiani:2014</x-ref>
 +
                                .
 +
                             </p>
 +
                            <div style="float:left; width:100%">
 +
                                <figure data-ref="fig:logicfunctions">
 +
                                    <img
 +
                                            src="https://static.igem.org/mediawiki/2016/d/d2/T--Slovenia--logic-functions.png">
 +
                                    <figcaption><b>Scheme of all non-trivial two input logic functions.</b>
 +
<p style="text-align:justify">Implementation of all 14 two input non-trivial logic operations
 +
based on the proteolysis and coiled coil displacement. Note that in addition to the previously publishes coiled coil-based protease
 +
sensor  <x-ref>Shekhawat2009</x-ref> we introduce an additional site for the proteolytic cleavage which enables implementation of
 +
all logic functions in a single layer.</p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
 
 +
                            <p>The main post-translational modification on which signaling and information processing
 +
                                systems
 +
                                are based is
 +
                                protein
 +
                                phosphorylation, which enables reversibility and fast response. Proteolysis is on the
 +
                                other
 +
                                hand
 +
                                irreversible,
 +
                                which
 +
                                imposes some limitations with respect to phosphorylation. However for many applications
 +
                                fast
 +
                                activation is most
 +
                                important, while the time to reset the system in the resting state is of secondary
 +
                                importance.</p>
  
                        <p>The main post-translational modification on which signaling and information processing
+
                            <p>Our protein-based system is designed in such a way that it works through coiled coil
                            systems
+
                                interactions, where each
                            are based is
+
                                coiled
                            protein
+
                                coil in the system is either free or bound to its partner depending on the proteolytic
                            phosphorylation, which enables reversibility and fast response. Proteolysis is on the other
+
                                activity.
                            hand
+
                                Furthermore,
                            irreversible,
+
                                the
                            which
+
                                signal
                            imposes some limitations with respect to phosphorylation. However for many applications fast
+
                                output is represented by reconstitution of a split protein (<i>i.e.</i> luciferase or
                            activation is most
+
                                protease),
                            important, while the time to reset the system in the resting state is not that
+
                                which
                            important.</p>
+
                                is fused
 +
                                separately
 +
                                to
 +
                                different coiled coil segments. To prove the feasibility of this design, we simulated
 +
                                the
 +
                                system's behavior
 +
                                using
 +
                                deterministic modeling. The simulations were run in Wolfram Mathematica, using
 +
                                xCellerator's
 +
                                xlr8r
 +
                                libraries.</p>
  
                        <p>Our protein-based system is designed in such a way that it works through coiled coil
+
                            <p>The designed binary logic gates can be divided into 5 subgroups, based on the position of
                            interactions, where each
+
                                the
                            coiled
+
                                protease cleavage
                            coil in the system is either free or bound to its partner depending on the proteolytic
+
                                sites:</p>
                            activity.
+
                             <ul>
                            Furthermore,
+
                                <li>a) cleavage site between coiled coils: conjunction, disjunction and both projection
                            the
+
                                    functions;
                             signal
+
                                </li>
                            output is represented by reconstitution of a split protein (i.e. luciferase or protease),
+
                                <li>b) cleavage site between the coiled coil and split protease: logical NAND, logical
                            which
+
                                    NOR
                            is fused
+
                                    and
                            separately
+
                                    both
                            to
+
                                    negations;
                            different coiled coil segments. To prove the feasibility of this design, we simulated the
+
                                </li>
                            system's behavior
+
                                <li>c) cleavage sites between coiled coils as well as between the coiled coil and split
                            using
+
                                    protease
                            deterministic modelling. The simulations were run in Wolfram Mathematica, using
+
                                    in
                            xCellerator's
+
                                    the same construct: material implication and converse implication;
                            xlr8r
+
                                </li>
                            libraries.</p>
+
                                <li>
 +
                                    d) cleavage sites between coiled coils as well as between the coiled coil and split
 +
                                    protease
 +
                                    in
 +
                                    different constructs: exclusive disjunction, logical biconditional, material
 +
                                    nonimplication
 +
                                    and
 +
                                    converse
 +
                                    nonimplication;
 +
                                </li>
 +
                                <li>e) no cleavage sites: tautology and contradiction.</li>
 +
                            </ul>
  
                        <p>The designed binary logic gates can be divided into 5 subgroups, based on the position of the
+
                             <p>
                             protease cleavage
+
                                For applications that require fast response (<i>e.g.</i> protein secretion), which are
                            sites:</p>
+
                                 the purpose
                        <ul>
+
                                of
                            <li>a) cleavage site between coiled-coils: conjunction, disjunction and both projection
+
                                our attempt, only
                                 functions;
+
                                falsity
                            </li>
+
                                preserving gates are appropriate, as biological systems usually require fast activation
                            <li>b) cleavage site between the coiled-coil and split protease: logical NAND, logical NOR
+
 
                                 and
 
                                 and
                                 both
+
                                 not
                                 negations;
+
                                fast
                             </li>
+
                                deactivation.
                             <li>c) cleavage sites between coiled-coils as well as between the coiled-coil and split
+
                                The
                                 protease
+
                                following functions correspond to the desired condition: both projection functions,
 +
                                 conjunction,
 +
                                disjunction,
 +
                                exclusive
 +
                                disjunction, material nonimplication, converse nonimplication and true.
 +
                             </p>
 +
                             <p>
 +
                                Since the dynamics of both functions in subgroup e) is trivial, <i>i.e.</i> output is a
 +
                                constant,
 +
                                their
 +
                                modeling is
 +
                                omitted.
 +
                                We selected a single function from the other four subgroups, for which a mathematical
 +
                                model
 +
                                was
 +
                                established and
 +
                                analyzed. We selected the following functions $f_1(x_1, x_2) = x_1$ from subgroup a),
 +
                                $f_2(x_1,
 +
                                x_2) = \neg(x_1
 +
                                \vee
 +
                                x_2)$ from b), $f_3(x_1, x_2) = x_2 \Rightarrow x_1$ from c) and $f_4(x_1, x_2) =
 +
                                \neg(x_1
 +
                                \Rightarrow x_2)$
 +
                                from
 +
                                d).
 +
                            </p>
 +
                            <p>
 +
                                Inducible proteases were assumed as the two input variables for each function. The
 +
                                logical
 +
                                values true and false
 +
                                were in
 +
                                all the cases presented with high and low amounts of output proteins or input proteases,
 +
                                respectively. Where the
 +
                                output
 +
                                signal is presented with several different proteins, the sum of their concentrations was
 +
                                observed. The schemes
 +
                                of
 +
                                the
 +
                                assumed reactions included in the implementation of described logical functions are
 +
                                 represented
 
                                 in
 
                                 in
                                 the same construct: material implication and converse implication;
+
                                 <ref>fig:scheme_buffer</ref>
                            </li>
+
                                 ,
                            <li>
+
                                 <ref>fig:scheme_nor</ref>
                                 d) cleavage sites between coiled-coils as well as between the coiled-coil and split
+
                                 ,
                                 protease
+
                                 <ref>fig:schemes_imply</ref>
                                 in
+
                                different constructs: exclusive disjunction, logical biconditional, material
+
                                 nonimplication
+
 
                                 and
 
                                 and
                                 converse
+
                                 <ref>fig:schemes_nimply</ref>
                                 nonimplication;
+
                                 . All
                            </li>
+
                                of
                             <li>e) no cleavage sites: tautology and contradiction.</li>
+
                                them ignore the leakage due to the binding of the coiled coils before cleavage, which
                        </ul>
+
                                could
                        </p>
+
                                be
 +
                                solved by setting
 +
                                the
 +
                                building elements with appropriate parameters as demonstrated in the experimental
 +
                                section on
 +
                                the
 +
                                <a
 +
                                        href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">CC-based
 +
                                    logic
 +
                                    design. </a>
 +
                             </p>
 +
                            <div style="float:left; width:100%">
 +
                                <figure data-ref="fig:scheme_buffer">
 +
                                    <img
 +
                                            src="https://static.igem.org/mediawiki/2016/2/20/T--Slovenia--5.5.2.png">
 +
                                    <figcaption><b>Scheme of the modeled function $f_1$.</b>
 +
                                        The output is represented with the
 +
                                        emission of
 +
                                        light induced
 +
                                        by
 +
                                        reconstitution of the split firefly luciferase reporter.
  
                        <p>
+
                                    </figcaption>
                            For applications that require fast response (e.g. protein secretion), which are the purpose
+
                                </figure>
                            of
+
                             </div>
                            our attempt, only
+
                            falsity
+
                            preserving gates are appropriate, as biological systems usually require fast activation and
+
                            not
+
                            fast
+
                            deactivation.
+
                            The
+
                            following functions correspond to the desired condition: both projection functions,
+
                            conjunction,
+
                            disjunction,
+
                            exclusive
+
                            disjunction, material nonimplication, converse nonimplication and true.
+
                        </p>
+
                        <p>
+
                            Since the dynamics of both functions in subgroup e) is trivial, i.e. output is a constant,
+
                            their
+
                            modelling is
+
                            omitted.
+
                            We selected a single function from the other four subgroups, for which a mathematical model
+
                            was
+
                            established and
+
                            analysed. We selected the following functions $f_1(x_1, x_2) = x_1$ from subgroup a),
+
                            $f_2(x_1,
+
                            x_2) = \neg(x_1
+
                            \vee
+
                            x_2)$ from b), $f_3(x_1, x_2) = x_2 \Rightarrow x_1$ from c) and $f_4(x_1, x_2) = \neg(x_1
+
                            \Rightarrow x_2)$
+
                            from
+
                            d).
+
                        </p>
+
                        <p>
+
                             Inducible proteases were assumed as the two input variables for each function. The logical
+
                            values true and false
+
                            were in
+
                            all the cases presented with high and low amounts of output proteins or input proteases,
+
                            respectively. Where the
+
                            output
+
                            signal is presented with several different proteins, the sum of their concentrations was
+
                            observed. The schemes
+
                            of
+
                            the
+
                            assumed reactions included in the implementation of described logical functions are
+
                            represented
+
                            in
+
                            <ref>fig:scheme_buffer</ref>
+
                            ,
+
                            <ref>fig:scheme_nor</ref>
+
                            ,
+
                            <ref>fig:schemes_imply</ref>
+
                            and
+
                            <ref>fig:schemes_nimply</ref>
+
                            . All
+
                            of
+
                            them ignore the leakage due to the binding of the coiled-coils before cleavage, which could
+
                            be
+
                            solved by setting
+
                            the
+
                            building elements with appropriate parameters as demonstrated in the experimental section on
+
                            the
+
                            <a
+
                                    href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">CC-based logic
+
                                design. </a>
+
                        </p>
+
  
                        <figure data-ref="fig:scheme_buffer">
+
                            <div style="float:left; width:100%">
                            <img class="ui huge centered image"
+
                                <figure data-ref="fig:scheme_nor">
                                src="https://static.igem.org/mediawiki/2016/2/20/T--Slovenia--5.5.2.png">
+
                                    <img
                            <figcaption><b>Scheme of the modelled function $f_1$.</b>
+
                                            src="https://static.igem.org/mediawiki/2016/c/c7/T--Slovenia--5.5.3.png">
<p style="text-align:justify">The output is represented with the
+
                                    <figcaption><b>Scheme of the modeled function $f_2$.</b>
                                emission of
+
                                        The output is represented with the
                                light induced
+
                                        emission
                                by
+
                                        of light induced
                                reconstitution of the split firefly luciferase reporter.
+
                                        by
                            </p>
+
                                        reconstitution of the split firefly luciferase reporter.
</figcaption>
+
                                    </figcaption>
                        </figure>
+
                                </figure>
 +
                            </div>
  
                        <figure data-ref="fig:scheme_nor">
+
                            <div style="float:left; width:100%">
                            <img class="ui huge centered image"
+
                                <figure data-ref="fig:schemes_imply">
                                src="https://static.igem.org/mediawiki/2016/c/c7/T--Slovenia--5.5.3.png">
+
                                    <img
                            <figcaption><b>Scheme of the modelled function $f_2$.</b>
+
                                            src="https://static.igem.org/mediawiki/2016/c/c1/T--Slovenia--5.5.4.png">
<p style="text-align:justify">The output is represented with the
+
                                    <figcaption><b>Scheme of the modeled function $f_3$.</b>
                                emission
+
                                        The output is represented with the
                                of light induced
+
                                        emission
                                by
+
                                        of light induced
                                reconstitution of the split firefly luciferase reporter.
+
                                        by
                             </p></figcaption>
+
                                        reconstitution of the split firefly luciferase reporter.
                         </figure>
+
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
                            <div style="float:left; width:100%">
 +
                                <figure data-ref="fig:schemes_nimply">
 +
                                    <img
 +
                                            src="https://static.igem.org/mediawiki/2016/5/59/T--Slovenia--5.5.5.png">
 +
                                    <figcaption><b>Scheme of the modeled function $f_4$.</b>
 +
                                        The output is represented with the
 +
                                        emission
 +
                                        of light induced
 +
                                        by
 +
                                        reconstitution of the split firefly luciferase reporter.
 +
                                    </figcaption>
 +
                                </figure>
 +
                             </div>
 +
                            <p style="clear:both"></p>
 +
                         </div>
  
                        <figure data-ref="fig:schemes_imply">
+
                    <div class="ui segment">
                            <img class="ui huge centered image"
+
                        <h3><span id="model" class="section colorize"> &nbsp; </span>Deterministic modeling</h3>
                                src="https://static.igem.org/mediawiki/2016/c/c1/T--Slovenia--5.5.4.png">
+
                            <figcaption><b>Scheme of the modelled function $f_3$.</b>
+
<p style="text-align:justify">The output is represented with the
+
                                emission
+
                                of light induced
+
                                by
+
                                reconstitution of the split firefly luciferase reporter.
+
                          </p> </figcaption>
+
                        </figure>
+
  
                        <figure data-ref="fig:schemes_nimply">
 
                            <img class="ui huge centered image"
 
                                src="https://static.igem.org/mediawiki/2016/5/59/T--Slovenia--5.5.5.png">
 
                            <figcaption><b>Scheme of the modelled function $f_4$.</b>
 
<p style="text-align:justify">The output is represented with the
 
                                emission
 
                                of light induced
 
                                by
 
                                reconstitution of the split firefly luciferase reporter.
 
                            </p></figcaption>
 
                        </figure>
 
                    </div>
 
                    <h3><span id="model" class="section"> &nbsp; </span>Deterministic modeling</h3>
 
                    <div class="ui segment">
 
 
                         We have established the following ordinary differential equations (ODEs) based model:
 
                         We have established the following ordinary differential equations (ODEs) based model:
 
                         <h4>Projection function $f_1$</h4>
 
                         <h4>Projection function $f_1$</h4>
Line 399: Line 454:
  
 
                         <p>
 
                         <p>
                             The function of light presence, denoted with $l(t)$, $l_1(t)$ or $l_2(t)$, is a piecewise
+
                             The function of light presence, denoted with $l(t)$, $l_1(t)$ or $l_2(t)$, is a
 +
                            piecewise
 
                             function which equals 1 if the light is present and 0 otherwise. Functions $p_1$, $p_2$,
 
                             function which equals 1 if the light is present and 0 otherwise. Functions $p_1$, $p_2$,
 
                             $g$,
 
                             $g$,
Line 514: Line 570:
 
                         </table>
 
                         </table>
 
                     </div>
 
                     </div>
                     <h1><span id="results" class="section"> &nbsp; </span>Results</h1>
+
                     <div>
                    <div class="ui segment">
+
                        <h1><span id="results" class="section colorize"> &nbsp; </span>Results</h1>
                        <p>We simulated the dynamics of established logic gates with the numerical integration of their
+
                        <div class="ui segment">
                            mathematical models
+
                            <p>We simulated the dynamics of established logic gates with the numerical integration of
                            described in the previous paragraphs. The results of our simulations are shown in
+
                                their
                            <ref>fig:buffer</ref>
+
                                mathematical models
                            ,
+
                                described in the previous paragraphs. The results of our simulations are shown in
                            <ref>fig:nor</ref>
+
                                <ref>fig:buffer</ref>
                            ,
+
                                ,
                            <ref>fig:imply</ref>
+
                                <ref>fig:nor</ref>
                            and
+
                                ,
                            <ref>fig:nimply</ref>
+
                                <ref>fig:imply</ref>
                            .
+
                                and
                            They confirm our
+
                                <ref>fig:nimply</ref>
                            assumption that all four types of logic functions offer short delay compared to their
+
                                .
                            equivalents based on
+
                                They confirm our
                            genetic
+
                                assumption that all four types of logic functions offer shorter delay compared to their
                            regulatory networks. The rise and fall times of our gates are simulated to be at around 70
+
                                equivalents based on
                            seconds compared to
+
                                genetic
                            hours
+
                                regulatory networks. The rise and fall times of our gates are simulated to be at around
                            that transcription regulation circuits usually require.
+
                                70
                        </p>
+
                                seconds compared to
 +
                                hours
 +
                                that transcription regulation circuits usually require.
 +
                            </p>
  
                        <figure data-ref="fig:buffer">
+
                            <div style="float:left; width:100%">
                            <img class="ui huge centered image"
+
                                <figure data-ref="fig:buffer">
                                src="https://static.igem.org/mediawiki/2016/7/7a/T--Slovenia--5.5.6.png">
+
                                    <img class="ui huge centered image"
                            <figcaption><b>$x_1$.</b>  
+
                                        src="https://static.igem.org/mediawiki/2016/7/7a/T--Slovenia--5.5.6.png">
<p style="text-align:justify">The output concentration of the logical function $x_1$ is shown
+
                                    <figcaption><b>$x_1$.</b>
                                with
+
                                        The output concentration of the logical function $x_1$
                                both possible
+
                                        is shown
                                inputs
+
                                        with
                                in the
+
                                        both possible
                                following order 0, 1.
+
                                        inputs
                            </p></figcaption>
+
                                        in the
                        </figure>
+
                                        following order 0, 1.
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
                        <figure data-ref="fig:nor">
+
                            <div style="float:left; width:100%">
                            <img class="ui huge centered image"
+
                                <figure data-ref="fig:nor">
                                src="https://static.igem.org/mediawiki/2016/2/27/T--Slovenia--5.5.7.png">
+
                                    <img
                            <figcaption><b>$x_1$ NOR $x_2$.</b>  
+
                                            src="https://static.igem.org/mediawiki/2016/2/27/T--Slovenia--5.5.7.png">
<p style="text-align:justify">The output concentration of the logical function $x_1$
+
                                    <figcaption><b>$x_1$ NOR $x_2$.</b>
                                NOR
+
                                        The output concentration of the logical function $x_1$
                                $x_2$ is shown
+
                                        NOR
                                with
+
                                        $x_2$ is shown
                                all
+
                                        with
                                four
+
                                        all
                                possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
+
                                        four
                            </p></figcaption>
+
                                        possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
                        </figure>
+
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
                        <figure data-ref="fig:imply">
+
                            <div style="float:left; width:100%">
                            <img class="ui huge centered image"
+
                                <figure data-ref="fig:imply">
                                src="https://static.igem.org/mediawiki/2016/0/06/T--Slovenia--5.5.8.png">
+
                                    <img
                            <figcaption><b>$x_2$ imply $x_1$.</b>  
+
                                            src="https://static.igem.org/mediawiki/2016/0/06/T--Slovenia--5.5.8.png">
<p style="text-align:justify">The output concentration of the logical function $x_2$
+
                                    <figcaption><b>$x_2$ imply $x_1$.</b>
                                imply $x_1$ is
+
                                        The output concentration of the logical function $x_2$
                                shown
+
                                        imply $x_1$ is
                                with all
+
                                        shown
                                four
+
                                        with all
                                possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
+
                                        four
                            </p></figcaption>
+
                                        possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
                        </figure>
+
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
                        <figure data-ref="fig:nimply">
+
                            <div style="float:left; width:100%">
                            <img class="ui huge centered image"
+
                                <figure data-ref="fig:nimply">
                                src="https://static.igem.org/mediawiki/2016/1/11/T--Slovenia--5.5.9.png">
+
                                    <img
                            <figcaption><b>$x_1$ nimply $x_2$.</b>  
+
                                            src="https://static.igem.org/mediawiki/2016/1/11/T--Slovenia--5.5.9.png">
<p style="text-align:justify">The output concentration of the logical function
+
                                    <figcaption><b>$x_1$ nimply $x_2$.</b>
                                $x_1$
+
                                        The output concentration of the logical function
                                nimply $x_2$ is
+
                                        $x_1$
                                shown
+
                                        nimply $x_2$ is
                                with
+
                                        shown
                                all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
+
                                        with
                            </p></figcaption>
+
                                        all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
                        </figure>
+
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
                        <p>
+
                            <p>
                            Our system also allows us to shorten the lifetime of the output signal without significantly
+
                                Our system also allows us to shorten the lifetime of the output signal without
                            reducing its
+
                                significantly
                            concentrations, by adding degradation tags to the output protein. The high output times
+
                                reducing its
                            achieved
+
                                concentrations by adding degradation tags to the output protein. The high output times
                            can even be
+
                                achieved
                            similar
+
                                can even be
                            to
+
                                similar
                            the input light induction time of 1 minute. These two characteristics can importantly
+
                                to
                            influence
+
                                the input light induction time of 1 minute. These two characteristics can importantly
                            several
+
                                influence
                            sequential
+
                                several
                            induction of logic gates and the further development of several layered logic circuits.
+
                                sequential
                        </p>
+
                                induction of logic gates and the further development of several layered logic circuits.
<div style="width:60%">
+
                            </p>
                        <figure data-ref="fig:reducedtime">
+
                            <div style="width:60%">
                            <img src="https://static.igem.org/mediawiki/2016/0/08/T--Slovenia--5.5.10.png"
+
                                <figure data-ref="fig:reducedtime">
                            >
+
                                    <img src="https://static.igem.org/mediawiki/2016/0/08/T--Slovenia--5.5.10.png"
                            <figcaption><p style="text-align:justify">Shortened output time due to the addition of degradation tags to the output
+
                                    >
                                protein.
+
                                    <figcaption>Shortened output time due to the addition of
                          </p> </figcaption>
+
                                        degradation tags to the output
                        </figure>
+
                                        protein.
</div>
+
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
                        </div>
 
                     </div>
 
                     </div>
                        <h2 id="ref-title" class="ui centered dividing header">References</h2>
+
                    <h3 class="ui left dividing header"><span id="ref-title" class="section colorize">&nbsp;</span>References
                        <div class="citing" id="references"></div>
+
                    </h3>
+
                    <div class="ui segment citing" id="references"></div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
     </div>
+
</div>
 +
<div>
 +
     <a href="//igem.org/Main_Page">
 +
        <img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%"
 +
            style="position: fixed; bottom:0; right:1%;">
 +
    </a>
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 17:49, 19 October 2016

Model Logic

  Modeling logic gates

  • Fourteen coiled-coil-based logic operations were designed and modeled in order to function in vivo.
  • Fast response was obtained upon reconstitution of light inducible proteases used as input.

 

Engineering and designing biological circuits constitute a central core of synthetic biology. In the context of our iGEM project, one of the challenges was to create, tune and regulate novel pathways in living cells using a fast-relay system. The toolset of orthogonal proteases that we developed worked as input for logic function in mammalian cells. Therefore, here we propose schemes for implementation of all 14 non-trivial two input binary logic functions based on a protein-protein interaction (coiled coil) and proteolysis system in cells (fig:logicfunctions). Designed logic gates based on protein-protein interaction are expected to have a shorter time delay compared to their analogues based on transcription activation Gaber:2014, Kiani:2014 .

Scheme of all non-trivial two input logic functions.

Implementation of all 14 two input non-trivial logic operations based on the proteolysis and coiled coil displacement. Note that in addition to the previously publishes coiled coil-based protease sensor Shekhawat2009 we introduce an additional site for the proteolytic cleavage which enables implementation of all logic functions in a single layer.

The main post-translational modification on which signaling and information processing systems are based is protein phosphorylation, which enables reversibility and fast response. Proteolysis is on the other hand irreversible, which imposes some limitations with respect to phosphorylation. However for many applications fast activation is most important, while the time to reset the system in the resting state is of secondary importance.

Our protein-based system is designed in such a way that it works through coiled coil interactions, where each coiled coil in the system is either free or bound to its partner depending on the proteolytic activity. Furthermore, the signal output is represented by reconstitution of a split protein (i.e. luciferase or protease), which is fused separately to different coiled coil segments. To prove the feasibility of this design, we simulated the system's behavior using deterministic modeling. The simulations were run in Wolfram Mathematica, using xCellerator's xlr8r libraries.

The designed binary logic gates can be divided into 5 subgroups, based on the position of the protease cleavage sites:

  • a) cleavage site between coiled coils: conjunction, disjunction and both projection functions;
  • b) cleavage site between the coiled coil and split protease: logical NAND, logical NOR and both negations;
  • c) cleavage sites between coiled coils as well as between the coiled coil and split protease in the same construct: material implication and converse implication;
  • d) cleavage sites between coiled coils as well as between the coiled coil and split protease in different constructs: exclusive disjunction, logical biconditional, material nonimplication and converse nonimplication;
  • e) no cleavage sites: tautology and contradiction.

For applications that require fast response (e.g. protein secretion), which are the purpose of our attempt, only falsity preserving gates are appropriate, as biological systems usually require fast activation and not fast deactivation. The following functions correspond to the desired condition: both projection functions, conjunction, disjunction, exclusive disjunction, material nonimplication, converse nonimplication and true.

Since the dynamics of both functions in subgroup e) is trivial, i.e. output is a constant, their modeling is omitted. We selected a single function from the other four subgroups, for which a mathematical model was established and analyzed. We selected the following functions $f_1(x_1, x_2) = x_1$ from subgroup a), $f_2(x_1, x_2) = \neg(x_1 \vee x_2)$ from b), $f_3(x_1, x_2) = x_2 \Rightarrow x_1$ from c) and $f_4(x_1, x_2) = \neg(x_1 \Rightarrow x_2)$ from d).

Inducible proteases were assumed as the two input variables for each function. The logical values true and false were in all the cases presented with high and low amounts of output proteins or input proteases, respectively. Where the output signal is presented with several different proteins, the sum of their concentrations was observed. The schemes of the assumed reactions included in the implementation of described logical functions are represented in fig:scheme_buffer , fig:scheme_nor , fig:schemes_imply and fig:schemes_nimply . All of them ignore the leakage due to the binding of the coiled coils before cleavage, which could be solved by setting the building elements with appropriate parameters as demonstrated in the experimental section on the CC-based logic design.

Scheme of the modeled function $f_1$. The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.
Scheme of the modeled function $f_2$. The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.
Scheme of the modeled function $f_3$. The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.
Scheme of the modeled function $f_4$. The output is represented with the emission of light induced by reconstitution of the split firefly luciferase reporter.

  Deterministic modeling

We have established the following ordinary differential equations (ODEs) based model:

Projection function $f_1$

\begin{align} v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l(t) + \sigma_2 * p_1(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l(t) + \sigma_2 * p_1'(t), \\ g'(t) =& \alpha_1- \delta_1 * g(t) - \tau * g(t) * p_1(t), \\ g_1'(t) =& -\delta_1 * g_1(t) + \gamma_2 * g_1g_2(t) + \beta_2 * g_1i(t) - \gamma_1 * g_1(t) * g_2(t) - \beta_1 * g_1(t) * i(t), \\ g_1g_2'(t) =& -\gamma_2 * g_1g_2(t) + \gamma_1 * g_1(t) * g_2(t) + \tau * g(t) * p_1(t), \\ g_1i'(t) =& -\delta_1 * g_1i(t) - \beta_2 * g_1i(t) + \beta_1 * g_1(t) * i(t), \\ g_2'(t) =& \gamma_2 * g_1g_2(t) - \delta_1 * g_2(t) - \gamma_1 * g_1(t) * g_2(t), \\ i'(t) =& \alpha_1+ \beta_2 * g_1i(t) - \delta_1 * i(t) - \beta_1 * g_1(t) * i(t),\\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l(t) - \sigma_2 * p_1(t) \end{align}

Logical NOR $f_2$

\begin{align} c'(t) =& \alpha_1- \delta_1 * c(t) + \beta_2 * cd(t) - \beta_1 * c(t) * d(t) - \tau * c(t) * p_1(t), \\ c_1'(t) =& -\delta_1 * c_1(t) + \tau * c(t) * p_1(t) + \tau * cd(t) * p_1(t), \\ c_2'(t) =& -\delta_1 * c_2(t) + \tau * c(t) * p_1(t), \\ c_2d'(t) =& \tau * cd(t) * p_1(t), \\ cd'(t) =& -\delta_1 * cd(t) - \beta_2 * cd(t) + \beta_1 * c(t) * d(t) - \tau * cd(t) * p_1(t) - \tau * cd(t) * p_2(t), \\ cd_2'(t) =& \tau * cd(t) * p_2(t), \\ v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ w'(t) =& \alpha_2 - \delta_1 * w(t) - \sigma_1 * w(t) * z(t) * l_2(t)+ \sigma_2 * p_2(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ z'(t) =& \alpha_2 - \delta_1 * z(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ d'(t) =& \alpha_1+ \beta_2 * cd(t) - \delta_1 * d(t) - \beta_1 * c(t) * d(t) - \tau * d(t) * p_2(t), \\ d_1'(t) =& -\delta_1 * d_1(t) + \tau * cd(t) * p_2(t) + \tau * d(t) * p_2(t), \\ d_2'(t) =& -\delta_1 * d_2(t) + \tau * d(t) * p_2(t), \\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l_1(t) - \sigma_2 * p_1(t), \\ p_2'(t) =& \sigma_1 * w(t) * z(t) * l_2(t) - \sigma_2 * p_2(t) \end{align}

Converse implication $f_3$

\begin{align} b'(t) =& \alpha_1- \delta_1 * b(t) - \beta_1 * b(t) * k_1(t) + \beta_2 * k_1b(t), \\ v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ w'(t) =& \alpha_2 - \delta_1 * w(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ z'(t) =& \alpha_2 - \delta_1 * z(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ k'(t) =& \alpha_1- \delta_1 * k(t) - \tau * k(t) * p_1(t) - \tau * k(t) * p_2(t), \\ k_1'(t) =& -\delta_1 * k_1(t) - \beta_1 * b(t) * k_1(t) + \gamma_2 * k_{12}(t) + \\ & \gamma_2 * k_{123}(t) + \beta_2 * k_1b(t) - \gamma_1 * k_1(t) * k_2(t) - \gamma_1 * k_1(t) * k_{23}(t) \\ &+ \tau * k(t) * p_1(t) + \tau * k_1k_2(t) * p_1(t), \\ k_{12}'(t) =& -\delta_1 * k_{12}(t) - \gamma_2 * k_{12}(t) + \gamma_1 * k_1(t) * k_2(t), \\ k_{123}'(t) =& -\gamma_2 * k_{123}(t) + \gamma_1 * k_1(t) * k_{23}(t), \\ k_1b'(t) =& \beta_1 * b(t) * k_1(t) - \delta_1 * k_1b(t) - \beta_2 * k_1b(t), \\ k_1k_2'(t) =& -\tau * k_1k_2(t) * p_1(t) + \tau * k(t) * p_2(t), \\ k_2'(t) =& \gamma_2 * k_{12}(t) - \delta_1 * k_2(t) - \gamma_1 * k_1(t) * k_2(t) + \tau * k_1k_2(t) * p_1(t) + \tau * k_{23}(t) * p_2(t), \\ k_{23}'(t) =& \gamma_2 * k_{123}(t) - \delta_1 * k_{23}(t) - \gamma_1 * k_1(t) * k_{23}(t) + \tau * k(t) * p_1(t) - \tau * k_{23}(t) * p_2(t), \\ k_3'(t) =& -\delta_1 * k_3(t) + \tau * k(t) * p_2(t) + \tau * k_{23}(t) * p_2(t), \\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l_1(t) - \sigma_2 * p_1(t), \\ p_2'(t) =& \sigma_1 * w(t) * z(t) * l_2(t) - \sigma_2 * p_2(t) \end{align}

Mathematical nonimplication $f_4$

\begin{align} v'(t) =& \alpha_2 - \delta_1 * v(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ w'(t) =& \alpha_2 - \delta_1 * w(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ u'(t) =& \alpha_2 - \delta_1 * u(t) - \sigma_1 * v(t) * u(t) * l_1(t) + \sigma_2 * p_1(t), \\ z'(t) =& \alpha_2 - \delta_1 * z(t) - \sigma_1 * w(t) * z(t) * l_2(t) + \sigma_2 * p_2(t), \\ d'(t) =& \alpha_1- \delta_1 * d(t) - \beta_1 * d(t) * g_1(t) + \beta_2 * g_1d(t) - \tau * d(t) * p_2(t), \\ d_1'(t) =& -\delta_1 * d_1(t) - \gamma_1 * d_1(t) * g_1(t) + \gamma_2 * g_1d_1(t) + \tau * d(t) * p_2(t), \\ d_2'(t) =& -\delta_1 * d_2(t) + \tau * d(t) * p_2(t) + \tau * g_1d(t) * p_2(t), \\ g'(t) =& \alpha_1- \delta_1 * g(t) - \tau * g(t) * p_1(t), \\ g_1'(t) =& -\delta_1 * g_1(t) - \beta_1 * d(t) * g_1(t) - \gamma_1 * d_1(t) * g_1(t) \\ & + \beta_2 * g_1d(t) + \gamma_2 * g_1d_1(t) + \gamma_2 * g_1g_2(t) - \gamma_1 * g_1(t) * g_2(t), \\ g_1d'(t) =& \beta_1 * d(t) * g_1(t) - \delta_1 * g_1d(t) - \beta_2 * g_1d(t) - \tau * g_1d(t) * p_2(t), \\ g_1d_1'(t) =& \gamma_1 * d_1(t) * g_1(t) - \gamma_2 * g_1d_1(t) + \tau * g_1d(t) * p_2(t), \\ g_1g_2'(t) =& -\gamma_2 * g_1g_2(t) + \gamma_1 * g_1(t) * g_2(t) + \tau * g(t) * p_1(t), \\ g_2'(t) =& \gamma_2 * g_1g_2(t) - \delta_1 * g_2(t) - \gamma_1 * g_1(t) * g_2(t), \\ p_1'(t) =& \sigma_1 * v(t) * u(t) * l_1(t) - \sigma_2 * p_1(t), \\ p_2'(t) =& \sigma_1 * w(t) * z(t) * l_2(t) - \sigma_2 * p_2(t) \end{align}

The function of light presence, denoted with $l(t)$, $l_1(t)$ or $l_2(t)$, is a piecewise function which equals 1 if the light is present and 0 otherwise. Functions $p_1$, $p_2$, $g$, $g_1$, $g_1d$, $g_1d_1$, $g_1g_2$, $g_1i$, $g_2$, $c$, $c_1$, $c_2$, $c_2d$, $cd$, $cd_2$, $w$, $z$, $d$, $d_1$, $d_2$, $k$, $k_1$, $k_{12}$, $k_{123}$, $k_1b$, $k_1k_2$, $k_2$, $k_{23}$, $k_3$, $i$, $b$, $k$, $v$, $u$, $w$, $z$ present concentrations of the equally labelled proteins. The constants used for the model are described in tab:refs .

Description Name Rate Reference
protein production rate $\alpha$ 3.5 * 20$^{-2}$ nMs$^{-1}$ Mariani:2010, Alon:2006
light inducible split protease production rate $\alpha_2$ 7 * 10$^{-1}$ nMs$^{-1}$ protein:protease DNA ratio is 1:20
protein degradation rate $\delta_1$ Log[2] / (3600 * 9) $s^{-1}$ Eden:2011
light inducible split protease dissociation rate $\sigma_2$ Log[2] / (60 * 5.5) s$^{-1}$ Taslimi:2016
light inducible split protease association rate $\sigma_1$ 1 nM$^{-1}$ s$^{-1}$ Alon:2006
protease cleavage rate $\tau$ 1.2 * 10$^-6$ nM$^-1$ s$^{-1}$ Yi:2013
stronger coiled coils association rate $\beta_1$ 3.17 * 10$^{-3}$ nM$^{-1}$ s$^{-1}$ DeCrescenzo:2003
stronger coiled coils dissociation rate $\beta_2$ 2 * 10$^{-4}$ s$^{-1}$ DeCrescenzo:2003
weaker coiled coils association rate $\gamma_1$ 7.3 * 10$^{-6}$ nM$^{-1}$ s$^{-1}$ DeCrescenzo:2003
weaker coiled coils dissociation rate $\gamma_2$ 1.67 * 10$^{-1}$ s$^{-1}$ DeCrescenzo:2003
time of light exposure / 60 s estimated from experimental results

  Results

We simulated the dynamics of established logic gates with the numerical integration of their mathematical models described in the previous paragraphs. The results of our simulations are shown in fig:buffer , fig:nor , fig:imply and fig:nimply . They confirm our assumption that all four types of logic functions offer shorter delay compared to their equivalents based on genetic regulatory networks. The rise and fall times of our gates are simulated to be at around 70 seconds compared to hours that transcription regulation circuits usually require.

$x_1$. The output concentration of the logical function $x_1$ is shown with both possible inputs in the following order 0, 1.
$x_1$ NOR $x_2$. The output concentration of the logical function $x_1$ NOR $x_2$ is shown with all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
$x_2$ imply $x_1$. The output concentration of the logical function $x_2$ imply $x_1$ is shown with all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).
$x_1$ nimply $x_2$. The output concentration of the logical function $x_1$ nimply $x_2$ is shown with all four possible inputs in the following order (0,0), (0,1), (1,0), (1,1).

Our system also allows us to shorten the lifetime of the output signal without significantly reducing its concentrations by adding degradation tags to the output protein. The high output times achieved can even be similar to the input light induction time of 1 minute. These two characteristics can importantly influence several sequential induction of logic gates and the further development of several layered logic circuits.

Shortened output time due to the addition of degradation tags to the output protein.

 References