Difference between revisions of "Team:Slovenia/CoiledCoilInteraction"

 
(62 intermediate revisions by 6 users not shown)
Line 27: Line 27:
 
             }
 
             }
 
         });
 
         });
 +
  
 
     </script>
 
     </script>
Line 44: Line 45:
 
                 </a>
 
                 </a>
 
                 <div class="ui vertical sticky text menu">
 
                 <div class="ui vertical sticky text menu">
                     <a class="item" href="#intro" style="margin-left: 10%">
+
                     <a class="item" href="https://2016.igem.org/Team:Slovenia/ModelLogic">
                        <i class="selected radio icon"></i>
+
<i class="chevron circle left icon"></i>
                        <b>Project</b>
+
<b>Modeling logic gates</b>
                    </a>
+
</a>
                    <a class="item" href="#achievements" style="margin-left: 10%">
+
                        <i class="selected radio icon"></i>
+
<a class="item" href="https://2016.igem.org/Team:Slovenia/CoiledCoilInteraction" style="color:#DB2828">
                        <b>Achievements</b>
+
<i class="selected radio icon"></i>
                    </a>
+
<b>Coiled-coil interaction model</b>
                    <a class="item" href="#requirements" style="margin-left: 10%">
+
</a>
                        <i class="selected radio icon"></i>
+
<a class="item" href="#intro" style="margin-left: 10%">
                        <b>Medal requirements</b>
+
<i class="selected radio icon"></i>
                    </a>
+
<b>Achievements</b>
                    <a class="item" href="idea">
+
</a>
                        <i class="chevron circle right icon"></i>
+
<a class="item" href="#model" style="margin-left: 10%">
                        <b>Idea</b>
+
<i class="selected radio icon"></i>
                    </a>
+
<b>Model</b>
 +
</a>
 +
 +
<a class="item" href="https://2016.igem.org/Team:Slovenia/Demonstrate">
 +
<i class="chevron circle right icon"></i>
 +
<b>Protease-based inducible secretion</b>
 +
</a>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 66: Line 73:
 
                 <!-- content goes here -->
 
                 <!-- content goes here -->
 
                 <div class="main ui citing justified container">
 
                 <div class="main ui citing justified container">
                     <h2>Coiled Coil interaction model</h2>
+
<div>
                     <p>Logic operations in biological systems have been tested with several approaches
+
                     <h1 class="ui left dividing header"><span id="intro" class="section colorize"> &nbsp; </span>Coiled-coil interaction model</h1>
                        <x-ref>Singh2014</x-ref>
+
<div class = "ui segment" style = "background-color: #ebc7c7; ">
                        . Our project
+
<p><b><ul><li>We designed a two state model that describes the interactions of coiled coils within our inducible system.<li>The difference of affinities required for a favorable ratio of signal to noise ratio whereas determined using the model.
                        relies on the reconstitution of split protein promoted by coiled coil (CC) dimerization. The
+
</ul></b></p>
                        interaction between CC peptides can be finely tuned
+
</div>
                        <x-ref>Woolfson2005, Gradisar2011, Negron2014</x-ref>
+
</div>
                        , thereby CCs offers a flexible and
+
                     <div class="ui segment"><h5><span id="model" class="section colorize"> &nbsp; </span></h5>
                        versatile platform in terms of designing logic operation in vivo. With the purpose of
+
                        <p>Logic operations in biological systems have been tested with several approaches
                        understanding the relation that underlies the interaction between coiled coil peptides and
+
                            <x-ref>Singh2014</x-ref>
                        therefore using them in logic gates, we designed the following model (
+
                            . Our project
                        <ref>5.4.1.</ref>
+
                            relies on the reconstitution of split protein promoted by coiled coil (CC) dimerization. The
                        ). Our system is based on constructs that have been characterized in mammalian cells in the
+
                            interaction between CC peptides can be finely tuned
                        context of <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic function
+
                            <x-ref>Woolfson2005, Gradisar2011, Negron2014</x-ref>
                            design</a>. Two orthogonal CC segment, A and b, fused together in on chain can bind each
+
                            , thereby CCs offers a flexible and
                        other and form a stable CC pair. This complex exists in combination with the peptide B, which
+
                            versatile platform in terms of designing logic operation <i>in vivo</i>. With the purpose of
                        can also bind the peptide A and has a different affinity from the peptide b. The linker that
+
                            understanding the relation that underlies the interaction between coiled coil peptides and
                        connects A and b can be cleaved by a generic protease (e.g. TEV), this irreversible reaction
+
                            therefore using them in logic gates, we designed the following model (<ref>5.4.1.</ref>). Our system is based on constructs that have been characterized in mammalian cells in the
                        shift the equilibrium towards a state in which all of the three peptides are free in solution
+
                            context of <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic
                        and therefore compete for binding. In our experiments, a similar system as the generic coils A
+
                                function
                        and B was fused to the <a
+
                                design</a>. Two orthogonal CC segments, <b>A</b> and <b>b</b>, fused together in one chain can bind each
                                href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Reporters">split reporter
+
                            other and form a stable CC pair. This complex exists in equilibrium with the peptide <b>B</b>,
                            firefly luciferase</a>.
+
                            which
                    </p>
+
                            can also bind the peptide <b>A</b> and has a different affinity from the peptide <b>b</b>. The linker that
 
+
                            connects <b>A</b> and <b>b</b> can be cleaved by a generic protease (e.g. TEVp). This irreversible reaction
                    <div style="float:left; width:100%">
+
                            shifts the equilibrium towards a state in which all three peptides are free in
                        <figure data-ref="5.4.1.">
+
                            solution
                            <img
+
                            and therefore compete for binding. In our experiments, a similar system as the generic coils
                                src="https://static.igem.org/mediawiki/2016/9/98/T--Slovenia--5.4.1.png">
+
                          <b>A</b>
                            <figcaption><b> Scheme representing the CC interaction model </b><br/> The two state system
+
                            and <b>B</b> was fused to the <a
                                 is considered at inducible by activity of TEV protease and signal both before and after
+
                                    href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Reporters#cle">split
                                 cleavage is represented as reconstitution on split firefly luciferase reporter.
+
                                 reporter
                            </figcaption>
+
                                 firefly luciferase</a>.
                        </figure>
+
                         </p>
                    </div>
+
                    <p>The relationship between the signal before and after cleavage by proteases is represented by the
+
                        difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation
+
                        constant required to obtain a good signal we solved two systems of equations set up considering
+
                        the two state of the reaction scheme (“Before cleavage and “After cleavage”) as separate phases
+
                        of the reaction and additionally, considering cleavage as an irreversible and complete
+
                        reaction.</p>
+
                    <p>Given values for total concentrations and Kd (from 10<sup>-9</sup> to 10<sup>-3</sup> M) the
+
                        equations, for the
+
                        reaction constants \eqref{1.1-2} - \eqref{2.1-2} and for mass conservation \eqref{1.3-4} -
+
                         \eqref{2.3-5}, were solved for the
+
                        species at equilibrium.</p>
+
                    Before cleavage
+
                    \begin{equation}
+
                    \ce{Axb + B <=>[Kd_x] A-b + B <=>[Kd_B] AB-b}
+
                    \end{equation}
+
                    \begin{align}
+
                    Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\
+
                    Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\
+
                    c_B &= [B] + [AB-b]\\
+
                    c_A-b &= [A-b]+[Axb]+[AB-b] \label{2.1-2}
+
                    \end{align}
+
                    After cleavage
+
                    \begin{equation}
+
                    \ce{Ab + B <=>[Kd_b] A + b + B <=>[Kd_B] AB + b}
+
                    \end{equation}
+
                    \begin{align}
+
                    Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\
+
                    Kd_B &= \frac{[A] * [B]}{[AB]} \\
+
                    c_A &= [A]+[AB]+[Ab]\\
+
                    c_B &= [B] +[AB]\\
+
                    c_b &= [b] + [Ab] \label{2.3-5}
+
                    \end{align}
+
  
                    >external text
+
                         <div style="margin-left:auto; margin-right:auto; width:75%">
                    The two systems are connected by the relation between the dissociation constants $Kd_b$ and $Kd_x$,
+
                            <figure data-ref="5.4.1.">
                    \begin{equation}
+
                                <img
                    Kd_x = Kd_b * 4 * 10^{-3} M^{-1}
+
                                        src="https://static.igem.org/mediawiki/2016/9/98/T--Slovenia--5.4.1.png">
                    \end{equation}
+
                                <figcaption><b> Scheme representing the CC interaction model </b><br/>
                    This relation approximates the higher affinity between the coils A and b when they are covalently
+
<p style="text-align:justify">The two-state
                    linked by a short peptide (as in the system “Before cleavage”)
+
                                    system
                    <x-ref>Moran1999, Zhou2004</x-ref>
+
                                    is considered inducible by activity of TEV protease and the signal, both before and
                    .
+
                                    after
                    <p>The results have been plotted varying the Kd for the interaction of A with both B and b, against
+
                                    cleavage, is represented as reconstitution on split firefly luciferase reporter.
                        the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b] the
+
</p>
                        signal before cleavage (leakage). The system revealed that in order to obtain a high difference
+
                                </figcaption>
                        between signal and leakage a high affinity of the coil B for the coil A (low $Kd_B$) is
+
                            </figure>
                        required,
+
                        </div>
                        while on the other hand an excessive destabilization of the autoinhibitory coil b (high $Kd_b$)
+
                        <p>The relationship between the signal before and after cleavage is represented by
                        would prevent the signal to be visible (
+
                            the
                         <ref>5.4.2.</ref>
+
                            difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation
                        ).
+
                            constant required to obtain a good signal we solved two systems of equations that describe the two separate states of the system, Before cleavage (eq. 1) and After cleavage (eq. 6). The two states are modeled as separate equilibria, with proteolytic cleavage considered as an irreversible and complete reaction.</p>
                    </p>
+
                        <p>Given values for total concentrations and Kd (from 10<sup>-9</sup> to 10<sup>-3</sup> M) the
                    <div style="float:left; width:100%">
+
                            equations, for the
                        <figure data-ref="5.4.2.">
+
                            reaction constants (2), (3) and (7), (8) and  and for mass conservation (4), (5) and (9), (10), (11) were solved for the
                            <img
+
                            species at equilibrium.</p>
                                src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--5.4.2.png">
+
                        Before cleavage
                            <figcaption><b> Difference between [AB] and [AB-b] depending on the ratio of Kd
+
                        \begin{equation}
                                values.</b><br/> The plots display the difference (M) between the signal before after
+
                        \ce{Axb + B <=>[Kd_x] A-b + B <=>[Kd_B] AB-b}
                                and the proteolytic cleavage (left) and the concentration of the species responsible for
+
                        \end{equation}
                                leakage [AB-b] (right) in a range of different Kd values.
+
                        \begin{align}
                            </figcaption>
+
                        Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\
                         </figure>
+
                        Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\
                    </div>
+
                         c_B &= [B] + [AB-b]\\
 +
                        c_A-_b &= [A-b]+[Axb]+[AB-b] \label{2.1-2}
 +
                        \end{align}
 +
                        After cleavage
 +
                        \begin{equation}
 +
                        \ce{Ab + B <=>[Kd_b] A + b + B <=>[Kd_B] AB + b}
 +
                        \end{equation}
 +
                        \begin{align}
 +
                        Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\
 +
                        Kd_B &= \frac{[A] * [B]}{[AB]} \\
 +
                        c_A &= [A]+[AB]+[Ab]\\
 +
                        c_B &= [B] +[AB]\\
 +
                        c_b &= [b] + [Ab] \label{2.3-5}
 +
                        \end{align}
  
                    <p>This relationship suggested to try using a different version of the coiled coils available in the
+
                      <p>The two systems are connected by the relation between the dissociation constants $Kd_b$ and
                         toolset already used by the <a href="https://2009.igem.org/Team:Slovenia">Slovenian iGEM 2009
+
                         $Kd_x$,
                            team</a>
+
                        \begin{equation}
                         <x-ref>Gradisar2011</x-ref>
+
                        Kd_x = \frac{Kd_b}{4 * 10^{-3}M}
                         .In order to
+
                        \end{equation}
                         obtain a detectable signal for <a
+
                        This relation (12) approximates the higher affinity between the coils <b>A</b> and <b>b</b> when they are
                                href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic operation in
+
                        covalently
                             vivo </a> we decided
+
                        linked by a short peptide (as in the system “Before cleavage”)
                                to use an inhibitory coiled coil, which would be displaced by the second coiled coil with higher
+
                         <x-ref>Moran1999, Zhou2004</x-ref>.</p>
                                affinity, only once is cleaved off its partner ($ Kd_B \gt Kd_b $). In doing so we selected
+
                          
                         P3 as
+
                         <p>We plotted the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b] the signal before cleavage (leakage), against different combinations of Kd for the interaction of <b>A</b> with both <b>B</b> and <b>b</b> ($Kd_B$ and $Kd_b$). Our calculations show that in order to obtain a large
                        B and
+
                             difference
                        P3mS as b, these two coiled coil peptides present only few substitutions and the higher
+
                            between signal and leakage the affinity of coil <b>B</b> for coil <b>A</b> needs to be strong (low $Kd_B$) (<ref>5.4.2.</ref> A). On the other hand, the affinity of the autoinhibitory coil <b>b</b> for <b>A</b> should be slightly lower than the affinity of <b>B</b> ($ Kd_b \gt Kd_B $), but not so low that it would allow too much leakage in the pre-cleavage state (<ref>5.4.2.</ref> B).</p>
                        solubility of P3mS (b), which presents Gln and Ser instead of Ala in b and c position of the
+
                         <div style="float:left; width:100%">
                        heptads, would favour the dissociation. We also tried differently destabilized versions of P3
+
                            <figure data-ref="5.4.2.">
                        and it turned out that, as in the forehead described model, an excessive destabilization
+
                                <img
                        (obtained by substituting a and d positions with Ala) leads to a small difference of the signal
+
                                        src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--5.4.2.png">
                        before and after cleavage. Using a slightly destabilized coiled coil (P3mS-2A), which presents
+
                                <figcaption><b> Difference between [AB] and [AB-b] depending on the ratio of Kd
                        only 2 alanines in the second heptad, the signal after cleavage reached its maximum of 16 folds.
+
                                    values.</b><br/>
                        (MISSING Link to Figure 4.12.9.)
+
<p style="text-align:justify">The plots display the difference between the signal before and after proteolytic cleavage (A) and the concentration of the species responsible
                    </p>
+
                                    for
 +
                                    leakage [AB-b] (B) in a range of different Kd values.
 +
</p>
 +
                                </figcaption>
 +
                            </figure>
 +
                        </div>
  
                    <h2 id="ref-title" class="ui centered dividing header">References</h2>
+
                        <p>Based on these results, we decided to use as <b>B</b> one of the peptides from the previously characterized coiled coil toolset used by the <a href="https://2009.igem.org/Team:Slovenia">Slovenian iGEM 2009
                     <div class="citing" id="references"></div>
+
                                team</a>
 +
                            <x-ref>Gradisar2011</x-ref>, P3. In order to
 +
                            obtain a detectable signal for <a
 +
                                    href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic operation
 +
                                <i>in
 +
                                vivo</i> </a> we decided
 +
                            to use an inhibitory coiled coil, which would be displaced by the second coiled coil with
 +
                            higher
 +
                            affinity, only once is cleaved off its partner ($ Kd_B \lt Kd_b $). In doing so we selected
 +
                            P3mS as <b>b</b>, this coiled coil peptide binds AP4 (<b>A</b>) with lower affinity than P3 (<b>B</b>) since it presents few substitutions (<i>i.e.</i> Gln and Ser instead of Ala in <i>b</i> and <i>c</i> positions) which confer a higher solubility than P3 (<b>b</b>). We also tried differently destabilized versions of
 +
                            P3mS
 +
                            and it turned out that, as in the model described above, an excessive destabilization
 +
                            (obtained by substituting <i>a</i> and <i>d</i> positions with Ala) leads to a small difference of the
 +
                            signal
 +
                            before and after cleavage. Using a slightly destabilized coiled coil (P3mS-2A), which
 +
                            presents
 +
                            only 2 alanines in the second heptad, the signal after cleavage reached its maximum of 16
 +
                            folds (<a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic#autoinhibitory">Logic Figure 10</a>).</p>
 +
                    </div>                    <h3 class="ui left dividing header"><span id="ref-title" class="section colorize">&nbsp;</span>References
 +
                    </h3>
 +
                     <div class="ui segment citing" id="references"></div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 194: Line 206:
 
     </div>
 
     </div>
 
</div>
 
</div>
 +
<div>
 +
<a href="//igem.org/Main_Page">
 +
<img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%" style = "position: fixed; bottom:0%; right:1%;">
 +
</a>
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 18:25, 19 October 2016

Model Logic

  Coiled-coil interaction model

  • We designed a two state model that describes the interactions of coiled coils within our inducible system.
  • The difference of affinities required for a favorable ratio of signal to noise ratio whereas determined using the model.

 

Logic operations in biological systems have been tested with several approaches Singh2014 . Our project relies on the reconstitution of split protein promoted by coiled coil (CC) dimerization. The interaction between CC peptides can be finely tuned Woolfson2005, Gradisar2011, Negron2014 , thereby CCs offers a flexible and versatile platform in terms of designing logic operation in vivo. With the purpose of understanding the relation that underlies the interaction between coiled coil peptides and therefore using them in logic gates, we designed the following model (5.4.1.). Our system is based on constructs that have been characterized in mammalian cells in the context of logic function design. Two orthogonal CC segments, A and b, fused together in one chain can bind each other and form a stable CC pair. This complex exists in equilibrium with the peptide B, which can also bind the peptide A and has a different affinity from the peptide b. The linker that connects A and b can be cleaved by a generic protease (e.g. TEVp). This irreversible reaction shifts the equilibrium towards a state in which all three peptides are free in solution and therefore compete for binding. In our experiments, a similar system as the generic coils A and B was fused to the split reporter firefly luciferase.

Scheme representing the CC interaction model

The two-state system is considered inducible by activity of TEV protease and the signal, both before and after cleavage, is represented as reconstitution on split firefly luciferase reporter.

The relationship between the signal before and after cleavage is represented by the difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation constant required to obtain a good signal we solved two systems of equations that describe the two separate states of the system, Before cleavage (eq. 1) and After cleavage (eq. 6). The two states are modeled as separate equilibria, with proteolytic cleavage considered as an irreversible and complete reaction.

Given values for total concentrations and Kd (from 10-9 to 10-3 M) the equations, for the reaction constants (2), (3) and (7), (8) and and for mass conservation (4), (5) and (9), (10), (11) were solved for the species at equilibrium.

Before cleavage \begin{equation} \ce{Axb + B <=>[Kd_x] A-b + B <=>[Kd_B] AB-b} \end{equation} \begin{align} Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\ Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\ c_B &= [B] + [AB-b]\\ c_A-_b &= [A-b]+[Axb]+[AB-b] \label{2.1-2} \end{align} After cleavage \begin{equation} \ce{Ab + B <=>[Kd_b] A + b + B <=>[Kd_B] AB + b} \end{equation} \begin{align} Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\ Kd_B &= \frac{[A] * [B]}{[AB]} \\ c_A &= [A]+[AB]+[Ab]\\ c_B &= [B] +[AB]\\ c_b &= [b] + [Ab] \label{2.3-5} \end{align}

The two systems are connected by the relation between the dissociation constants $Kd_b$ and $Kd_x$, \begin{equation} Kd_x = \frac{Kd_b}{4 * 10^{-3}M} \end{equation} This relation (12) approximates the higher affinity between the coils A and b when they are covalently linked by a short peptide (as in the system “Before cleavage”) Moran1999, Zhou2004.

We plotted the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b] the signal before cleavage (leakage), against different combinations of Kd for the interaction of A with both B and b ($Kd_B$ and $Kd_b$). Our calculations show that in order to obtain a large difference between signal and leakage the affinity of coil B for coil A needs to be strong (low $Kd_B$) (5.4.2. A). On the other hand, the affinity of the autoinhibitory coil b for A should be slightly lower than the affinity of B ($ Kd_b \gt Kd_B $), but not so low that it would allow too much leakage in the pre-cleavage state (5.4.2. B).

Difference between [AB] and [AB-b] depending on the ratio of Kd values.

The plots display the difference between the signal before and after proteolytic cleavage (A) and the concentration of the species responsible for leakage [AB-b] (B) in a range of different Kd values.

Based on these results, we decided to use as B one of the peptides from the previously characterized coiled coil toolset used by the Slovenian iGEM 2009 team Gradisar2011, P3. In order to obtain a detectable signal for logic operation in vivo we decided to use an inhibitory coiled coil, which would be displaced by the second coiled coil with higher affinity, only once is cleaved off its partner ($ Kd_B \lt Kd_b $). In doing so we selected P3mS as b, this coiled coil peptide binds AP4 (A) with lower affinity than P3 (B) since it presents few substitutions (i.e. Gln and Ser instead of Ala in b and c positions) which confer a higher solubility than P3 (b). We also tried differently destabilized versions of P3mS and it turned out that, as in the model described above, an excessive destabilization (obtained by substituting a and d positions with Ala) leads to a small difference of the signal before and after cleavage. Using a slightly destabilized coiled coil (P3mS-2A), which presents only 2 alanines in the second heptad, the signal after cleavage reached its maximum of 16 folds (Logic Figure 10).

 References