Difference between revisions of "Team:Slovenia/Demonstrate"

m
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Slovenia}}
 
{{Slovenia}}
<html>
 
<head>
 
    <title>Model Logic</title>
 
    <link rel="stylesheet"
 
          href="//2016.igem.org/Team:Slovenia/libraries/semantic-min-css?action=raw&ctype=text/css">
 
    <script type="text/javascript"
 
            src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
 
    <link rel="stylesheet" type="text/css"
 
          href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
 
    <script type="text/javascript"
 
            src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
 
    <script type="text/javascript"
 
            src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
    <script type="text/javascript"
 
            src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
 
    <!-- MathJax (LaTeX for the web) -->
 
    <script type="text/x-mathjax-config">
 
        MathJax.Hub.Config({
 
            tex2jax: {
 
                inlineMath: [['$', '$'], ['\\(', '\\)']],
 
                processEscapes: true
 
            },
 
            TeX: {
 
                extensions: ["mhchem.js"],
 
                equationNumbers: {autoNumber: "all" }
 
            }
 
        });
 
 
 
    </script>
 
    <script type="text/javascript" async
 
            src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
    </script>
 
</head>
 
<body>
 
 
 
<div id="example">
 
    <div class="pusher">
 
        <div class="full height">
 
            <div class="banana">
 
                <a href="//2016.igem.org/Team:Slovenia">
 
                    <img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
 
                </a>
 
                <div class="ui vertical sticky text menu">
 
                    <a class="item" href="https://2016.igem.org/Team:Slovenia/ModelLogic">
 
<i class="chevron circle left icon"></i>
 
<b>Modeling logic gates</b>
 
</a>
 
 
<a class="item" href="https://2016.igem.org/Team:Slovenia/CoiledCoilInteraction" style="color:#DB2828">
 
<i class="selected radio icon"></i>
 
<b>Coiled-coil interaction model</b>
 
</a>
 
<a class="item" href="#intro" style="margin-left: 10%">
 
<i class="selected radio icon"></i>
 
<b>Achievements</b>
 
</a>
 
<a class="item" href="#model" style="margin-left: 10%">
 
<i class="selected radio icon"></i>
 
<b>Model</b>
 
</a>
 
 
<a class="item" href="https://2016.igem.org/Team:Slovenia/Demonstrate">
 
<i class="chevron circle right icon"></i>
 
<b>Protease inducible secretion</b>
 
</a>
 
                </div>
 
            </div>
 
            <div class="article" id="context">
 
                <!-- menu goes here -->
 
                <!-- content goes here -->
 
                <d{{Slovenia}}
 
 
<html>
 
<html>
 
<head>
 
<head>
Line 133: Line 60:
 
                   <a class="item" href="//2016.igem.org/Team:Slovenia/Demonstrate" style="color:#DB2828;">
 
                   <a class="item" href="//2016.igem.org/Team:Slovenia/Demonstrate" style="color:#DB2828;">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Protease inducible secretion</b>
+
                         <b>Protease-based</b> <br />
 +
<b style="margin-left: 12%">inducible secretion</b>
 
                     </a>
 
                     </a>
 
                     <a class="item" href="#ach" style="margin-left: 10%">
 
                     <a class="item" href="#ach" style="margin-left: 10%">
Line 164: Line 92:
 
                 <div>
 
                 <div>
 
                     <div class="main ui citing justified container">
 
                     <div class="main ui citing justified container">
                        <h1 class="ui left dividing header"><span class="section">&nbsp;</span>Protease inducible
+
<div>
                            secretion</h1>
+
<h1 class="ui left dividing header"><span id="ach" class="section colorize">&nbsp;</span>Protease-based inducible
 +
secretion</h1>
  
                        <div class="ui segment" style="background-color: #ebc7c7; ">
+
<div class="ui segment" style="background-color: #ebc7c7;">
<h4><span id = "ach" class="section colorize">&nbsp;</span></h4>
+
                            <p><b>
+
<p><b>
                                <ul>
+
<ul>
                                    <li>Retention of proteins in ER lumen was demonstrated by confocal microscopy and
+
<li>Retention of proteins in ER lumen was demonstrated by confocal microscopy and
                                        detection of the protein in the cell medium.
+
detection of the protein in the cell medium.
                                    <li>A variant of TEVp active in the ER lumen was implemented to control protein
+
<li>A variant of TEVp active in the ER lumen was implemented to control protein
                                        secretion from the ER lumen.
+
secretion from the ER lumen.
                                    <li>Retention of proteins on the ER membrane was also demonstrated by confocal
+
<li>Retention of proteins on the ER membrane was also demonstrated by confocal
                                        microscopy and detection of the protein in the cell medium.
+
microscopy and detection of the protein in the cell medium.
                                    <li>Rapamycin induced cleavage was used for controlled and inducible secretion of
+
<li>Rapamycin induced cleavage was used for controlled and inducible secretion of
                                        proteins from the ER membrane.
+
proteins from the ER membrane.
                                </ul>
+
</ul>
                            </b></p>
+
</b></p>
 +
</div>
 
                         </div>
 
                         </div>
 
                         <div class="ui segment">
 
                         <div class="ui segment">
 
<div>
 
<div>
 
<h4><span id = "intro" class="section colorize">&nbsp;</span></h4>
 
<h4><span id = "intro" class="section colorize">&nbsp;</span></h4>
                             <p>To achieve a fast regulated cellular response resulting in the release of a protein, we
+
                             <p>To achieve a fast regulated cellular response resulting in the protein release, we
 
                                 decided to mimic the release of insulin from beta cells where the protein of
 
                                 decided to mimic the release of insulin from beta cells where the protein of
                                 interest is pre-formed and present in the cell in secretory granules. In contrast to the
+
                                 interest is pre-formed and present intracellularly in secretory granules. In contrast to the
 
                                 specialized storage and release mechanism of insulin from beta cells we wanted to
 
                                 specialized storage and release mechanism of insulin from beta cells we wanted to
 
                                 develop a more general and modular solution by making use of components already existing
 
                                 develop a more general and modular solution by making use of components already existing
Line 203: Line 133:
 
                                         date. In one of the few examples Rivera et al. developed a system where the
 
                                         date. In one of the few examples Rivera et al. developed a system where the
 
                                         protein of interest
 
                                         protein of interest
                                         was fused to a conditional aggregation domain (CAD).
+
                                         was fused to a conditional aggregation domain (CAD)
 
                                         <x-ref>Rivera2000</x-ref>
 
                                         <x-ref>Rivera2000</x-ref>
 
                                         . These domains form aggregates in the endoplasmic reticulum (ER) that are too
 
                                         . These domains form aggregates in the endoplasmic reticulum (ER) that are too
Line 216: Line 146:
 
                                         started to disaggregate and were transported from the ER to the plasma membrane,
 
                                         started to disaggregate and were transported from the ER to the plasma membrane,
 
                                         but have not been
 
                                         but have not been
                                         observed in the cell supernatant.
+
                                         observed in the cell supernatant
                                         <x-ref>Chen2013</x-ref>
+
                                         <x-ref>Chen2013</x-ref>.
 
                                         The weakness of the two described systems is that they both rely on the
 
                                         The weakness of the two described systems is that they both rely on the
 
                                         exogenous chemical or physical signals instead of using a biochemical signal to
 
                                         exogenous chemical or physical signals instead of using a biochemical signal to
Line 233: Line 163:
 
                                 sequence
 
                                 sequence
 
                                 (Lys-Asp-Glu-Leu) while type I transmembrane (TM) proteins contain a dilysine (KKXX)
 
                                 (Lys-Asp-Glu-Leu) while type I transmembrane (TM) proteins contain a dilysine (KKXX)
                                 motif on their C-terminus (cytosolic side).
+
                                 motif on their C-terminus (cytosolic side)
                                 <x-ref> Munro1987, Jackson1990,
+
                                 <x-ref>Munro1987, Jackson1990, Stornaiuolo2003</x-ref>.
                                    Stornaiuolo2003
+
                                 . The mechanism that allows these proteins to stay in the ER is retrieval rather than
                                </x-ref>
+
                                 retention. However, we decided to use the term retention for
                                 . The mechanism that allows these proteins to stay in the ER is more retrieval than
+
                                 retention. However we decided to use the term retention for
+
 
                                 description of this process. ER luminal proteins interact with the KDEL receptor, a
 
                                 description of this process. ER luminal proteins interact with the KDEL receptor, a
 
                                 transmembrane ER resident protein. The cytosolic part of the KDEL receptor interacts
 
                                 transmembrane ER resident protein. The cytosolic part of the KDEL receptor interacts
Line 245: Line 173:
 
                                 proteins from the cis end of the Golgi apparatus (cis-GA) back to the ER. The KKXX motif
 
                                 proteins from the cis end of the Golgi apparatus (cis-GA) back to the ER. The KKXX motif
 
                                 present
 
                                 present
                                 on type I TM proteins can directly interact with the COP I for retrieval.
+
                                 on type I TM proteins can directly interact with the COP I for retrieval
                                 <x-ref> Stornaiuolo2003, Letourneur1994</x-ref>
+
                                 <x-ref>Stornaiuolo2003, Letourneur1994</x-ref>
 
                                 .
 
                                 .
 
                             </p>
 
                             </p>
Line 258: Line 186:
 
                                 site to allow for inducible secretion, which could be replaced by any other peptide
 
                                 site to allow for inducible secretion, which could be replaced by any other peptide
 
                                 target
 
                                 target
                                 of our orthogonal protease set.</p>
+
                                 of our <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Orthogonality"> orthogonal protease set</a>.</p>
 
                         </div>
 
                         </div>
 
                         </div>
 
                         </div>
Line 265: Line 193:
 
                         <div class="ui segment">
 
                         <div class="ui segment">
 
<div>
 
<div>
                             <h3><span id = "lum" class="section colorize">&nbsp;</span>Secretion from the ER lumen</h3>
+
                             <h3><span id = "lum" class="section colorize">&nbsp;</span>Release from the ER lumen and secretion from the cell</h3>
 
                             <p>To achieve and detect the inducible secretion from the ER lumen, we created two reporter
 
                             <p>To achieve and detect the inducible secretion from the ER lumen, we created two reporter
 
                                 constructs with a cleavable KDEL sequence targeted to the ER lumen: SEAP<sup>KDEL</sup>
 
                                 constructs with a cleavable KDEL sequence targeted to the ER lumen: SEAP<sup>KDEL</sup>
Line 290: Line 218:
 
                                         localization and
 
                                         localization and
 
                                         accumulation of this TEVp variant inside the endoplasmic reticulum, we also
 
                                         accumulation of this TEVp variant inside the endoplasmic reticulum, we also
                                         attached a signal sequence at the N-terminus and KDEL at the C-terminus of the
+
                                         attached an ER signal sequence at the N-terminus and KDEL at the C-terminus of the
 
                                         protein.
 
                                         protein.
 
                                     </p>
 
                                     </p>
Line 316: Line 244:
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
                             <p>When the TagRFP<sup>KDEL</sup> reporter (
+
                             <p>When the TagRFP<sup>KDEL</sup> reporter (<ref>1</ref>A) was expressed in the ER without an active erTEVp we confirmed its localization in the
                                <ref>1</ref>
+
                                A) was expressed in the ER without an active erTEVp we confirmed its localization in the
+
 
                                 ER with confocal microscopy
 
                                 ER with confocal microscopy
                                 (
+
                                 (<ref>1</ref>B). Additionally, we could not detect any TagRFP in the cell medium with Western
                                <ref>1</ref>
+
                                B). Additionally, we could not detect any TagRFP in the cell medium with Western
+
 
                                 blotting. When erTEVp was present and active in the ER, the KDEL sequence was
 
                                 blotting. When erTEVp was present and active in the ER, the KDEL sequence was
 
                                 removed from the reporter and the protein was secreted from the cell, which we detected
 
                                 removed from the reporter and the protein was secreted from the cell, which we detected
                                 with Western blot (
+
                                 with Western blot (<ref>1</ref>C). This demonstrated that proteolytic activity in the ER can
                                <ref>1</ref>
+
                                C), demonstrating that proteolytic activity in the ER can
+
 
                                 regulate protein secretion.
 
                                 regulate protein secretion.
 
                             </p>
 
                             </p>
Line 333: Line 255:
 
                                 not present in the cell medium without coexpression of erTEVp. When erTEVp was
 
                                 not present in the cell medium without coexpression of erTEVp. When erTEVp was
 
                                 cotransfected with
 
                                 cotransfected with
                                 the reporter, we detected a large increase in enzymatic activity in the medium (
+
                                 the reporter, we detected a large increase in enzymatic activity in the medium (<ref>2</ref>).
                                <ref>2</ref>
+
                                ).
+
 
                             </p>
 
                             </p>
 
                             <div style="float:left; width:40%">
 
                             <div style="float:left; width:40%">
Line 349: Line 269:
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
                             </div><p  style="clear:both"></p>
+
                             </div>
 
                             </div>
 
                             </div>
  
 
<div>
 
<div>
                             <h3 style="clear:both"><span id = "mem" class="section colorize">&nbsp;</span>Secretion from the ER membrane</h3>
+
                             <h3 style="clear:both"><span id = "mem" class="section colorize">&nbsp;</span>Release from the ER membrane and secretion from the cell</h3>
 
                             <p>The second approach to regulate protein secretion from the ER by protease was to used
 
                             <p>The second approach to regulate protein secretion from the ER by protease was to used
 
                                 KKMP ER retention peptide linked to the transmembrane protein with a protease target
 
                                 KKMP ER retention peptide linked to the transmembrane protein with a protease target
                                 motif on the cytoplasmic side, N-terminal to the KKMP peptide. A transmembrane (TM)
+
                                 motif on the cytoplasmic side, N-terminally to the KKMP peptide. A transmembrane (TM)
 
                                 domain from the B-cell receptor
 
                                 domain from the B-cell receptor
 
                                 (<a href="http://parts.igem.org/Part:BBa_K157010">Bba_K157010</a>) was used for the
 
                                 (<a href="http://parts.igem.org/Part:BBa_K157010">Bba_K157010</a>) was used for the
Line 364: Line 284:
 
                                 were designed and the constructs also contained a signal sequence at their N-terminus
 
                                 were designed and the constructs also contained a signal sequence at their N-terminus
 
                                 and a
 
                                 and a
                                 proteolytically cleavable ER retention signal at their C-terminus. In case of the
+
                                 proteolytically cleavable ER retention signal at their C-terminus. In case of
 
                                 transmembrane targeted reporters we used the KKMP retention signal preceded by 3 copies
 
                                 transmembrane targeted reporters we used the KKMP retention signal preceded by 3 copies
 
                                 of the
 
                                 of the
Line 370: Line 290:
 
                             <p>Additionally, either one or four furin cleavage sites were inserted between the protein
 
                             <p>Additionally, either one or four furin cleavage sites were inserted between the protein
 
                                 of interest on the luminal side of the ER, which enable cleavage of the reporter
 
                                 of interest on the luminal side of the ER, which enable cleavage of the reporter
                                 protein from the membrane, but this could occur only after the KKMP had been removed and
+
                                 protein from the membrane, but this could only occur after the KKMP had been removed and
 
                                 the protein could enter the trans-GA. Furin is a native cellular endoprotease that is
 
                                 the protein could enter the trans-GA. Furin is a native cellular endoprotease that is
 
                                 active only in the trans-GA.</x-ref>Henrich2003</x-ref> This allowed us to design our
 
                                 active only in the trans-GA.</x-ref>Henrich2003</x-ref> This allowed us to design our
Line 404: Line 324:
 
                             <div style="float:right; width:50%"><span  id="SEAP" class="section"></span>
 
                             <div style="float:right; width:50%"><span  id="SEAP" class="section"></span>
 
                                 <figure data-ref="4">
 
                                 <figure data-ref="4">
                                     <img src="https://static.igem.org/mediawiki/2016/2/2f/T--Slovenia--6.2.4.png">
+
                                     <img onclick="resize(this)" src="https://static.igem.org/mediawiki/2016/2/2f/T--Slovenia--6.2.4.png">
 
                                     <figcaption><b>Inducible secretion of reporter localized on ER membrane.</b><br/>
 
                                     <figcaption><b>Inducible secretion of reporter localized on ER membrane.</b><br/>
 
                                         <p style="text-align:justify">SEAP activity was increased in the medium of cells
 
                                         <p style="text-align:justify">SEAP activity was increased in the medium of cells
                                             induced with rapamycin. (B) Scheme of the transmembrane reporter with
+
                                             induced with rapamycin. Scheme of the transmembrane reporter with
 
                                             cleavable KKMP retention signal and inducible protease.
 
                                             cleavable KKMP retention signal and inducible protease.
 
                                             HEK293T cells were transfected with the indicated reporter and rapamycin
 
                                             HEK293T cells were transfected with the indicated reporter and rapamycin
Line 416: Line 336:
 
                             <p>Localization of the TagRFP:TM<sup>KKMP</sup> reporter was confirmed by the confocal
 
                             <p>Localization of the TagRFP:TM<sup>KKMP</sup> reporter was confirmed by the confocal
 
                                 microscopy. We used a control reporter without the KKMP retention signal (TagRFP:TM)
 
                                 microscopy. We used a control reporter without the KKMP retention signal (TagRFP:TM)
                                 which we detected both on the ER and the plasma membrane (
+
                                 which we detected both on the ER and the plasma membrane (<ref>3</ref>A). In case of present KKMP retention signal, the reporter was detected only on the
                                <ref>3</ref>
+
                                A). In case of the present KKMP retention signal, the reporter was detected only on the
+
 
                                 ER
 
                                 ER
                                 (
+
                                 (<ref>3</ref>B). When TagRFP:TM<sup>KKMP</sup> was coexpressed with TEVp, localization of the
                                <ref>3</ref>
+
                                B). When TagRFP:TM<sup>KKMP</sup> was coexpressed with TEVp, localization of the
+
 
                                 reporter was similar to the localization of the positive control (TagRFP:TM)
 
                                 reporter was similar to the localization of the positive control (TagRFP:TM)
                                 on the plasma membrane and the ER (
+
                                 on the plasma membrane and the ER (<ref>3</ref>C).
                                <ref>3</ref>
+
                                C).
+
 
                             </p>
 
                             </p>
 
                             <p>A band with a slightly larger apparent size than the expected size of TagRFP (28 kDa) was
 
                             <p>A band with a slightly larger apparent size than the expected size of TagRFP (28 kDa) was
                                 detected by western blotting in cells transfected with TagRFP:TM. We showed that the
+
                                 detected by Western blotting in cells transfected with TagRFP:TM. We showed that the
 
                                 unexpected difference in size was due to glycosylation, as we detected the protein at
 
                                 unexpected difference in size was due to glycosylation, as we detected the protein at
 
                                 the expected size after deglycosylation of the medium sample with N-glycosidase F. We
 
                                 the expected size after deglycosylation of the medium sample with N-glycosidase F. We
Line 445: Line 359:
 
                                 activity in the medium of
 
                                 activity in the medium of
 
                                 cells stimulated with rapamycin, which was dose dependent with respect to the amount of
 
                                 cells stimulated with rapamycin, which was dose dependent with respect to the amount of
                                 the transfected reporter-coding plasmid (
+
                                 the transfected reporter-coding plasmid (<ref>4</ref>). These results confirm that
                                <ref>4</ref>
+
                                ). These results confirm that
+
 
                                 secretion of a target protein can be made inducible by an externally supplied signal,
 
                                 secretion of a target protein can be made inducible by an externally supplied signal,
 
                                 processed through our split protease system.
 
                                 processed through our split protease system.
Line 455: Line 367:
 
                         </div>
 
                         </div>
 
                         </div>
 
                         </div>
                         <h1 class="ui left dividing header"><span id="ref-title" class="section">&nbsp;</span>References
+
                         <h3 class="ui left dividing header"><span id="ref-title" class="section">&nbsp;</span>References
                         </h1>
+
                         </h3>
 
                         <div class="ui segment citing" id="references"></div>
 
                         <div class="ui segment citing" id="references"></div>
 
                     </div>
 
                     </div>
Line 470: Line 382:
 
     </div>
 
     </div>
 
</div>
 
</div>
</body>
 
</html>
 
iv class="main ui citing justified container">
 
 
                    <h1 class="ui left dividing header"><span id="intro" class="section colorize"> &nbsp; </span>Coiled-coil interaction model</h1>
 
<div class = "ui segment" style = "background-color: #ebc7c7; ">
 
<p><b><ul><li>Model of a two state inducible system based on autoinhibitory coiled coil  interactions was designed.<li>Range of $Kd_B$ and $Kd_b$ values  resulting in optimal signal to noice ratio was determined.
 
</ul></b></p>
 
</div>
 
                    <h5><div class="ui segment"><span id="model" class="section colorize"> &nbsp; </span></h5>
 
                        <p>Logic operations in biological systems have been tested with several approaches
 
                            <x-ref>Singh2014</x-ref>
 
                            . Our project
 
                            relies on the reconstitution of split protein promoted by coiled-coil (CC) dimerization. The
 
                            interaction between CC peptides can be finely tuned
 
                            <x-ref>Woolfson2005, Gradisar2011, Negron2014</x-ref>
 
                            , thereby CCs offers a flexible and
 
                            versatile platform in terms of designing logic operation <i>in vivo</i>. With the purpose of
 
                            understanding the relation that underlies the interaction between coiled-coil peptides and
 
                            therefore using them in logic gates, we designed the following model (
 
                            <ref>5.4.1.</ref>
 
                            ). Our system is based on constructs that have been characterized in mammalian cells in the
 
                            context of <a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic
 
                                function
 
                                design</a>. Two orthogonal CC segment, <b>A</b> and <b>b</b>, fused together in on chain can bind each
 
                            other and form a stable CC pair. This complex exists in combination with the peptide <b>B</b>,
 
                            which
 
                            can also bind the peptide <b>A</b> and has a different affinity from the peptide <b>b</b>. The linker that
 
                            connects <b>A</b> and <b>b</b> can be cleaved by a generic protease (e.g. TEVp), this irreversible reaction
 
                            shifts the equilibrium towards a state in which all of the three peptides are free in
 
                            solution
 
                            and therefore compete for binding. In our experiments, a similar system as the generic coils
 
                          <b>A</b>
 
                            and <b>B</b> was fused to the <a
 
                                    href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Reporters#cle">split
 
                                reporter
 
                                firefly luciferase</a>.
 
                        </p>
 
 
                        <div style="float:left; width:100%">
 
                            <figure data-ref="5.4.1.">
 
                                <img
 
                                        src="https://static.igem.org/mediawiki/2016/9/98/T--Slovenia--5.4.1.png">
 
                                <figcaption><b> Scheme representing the CC interaction model </b><br/>
 
<p style="text-align:justify">The two state
 
                                    system
 
                                    is considered at inducible by activity of TEV protease and signal both before and
 
                                    after
 
                                    cleavage is represented as reconstitution on split firefly luciferase reporter.
 
</p>
 
                                </figcaption>
 
                            </figure>
 
                        </div>
 
                        <p>The relationship between the signal before and after cleavage by proteases is represented by
 
                            the
 
                            difference [AB] - [AB-b]. In order to understand the optimal combination of dissociation
 
                            constant required to obtain a good signal we solved two systems of equations set up
 
                            considering
 
                            the two state of the reaction scheme, Before cleavage and After cleavage, (1) and (6) respectively, as separate
 
                            phases
 
                            of the reaction and additionally, considering cleavage as an irreversible and complete
 
                            reaction.</p>
 
                        <p>Given values for total concentrations and Kd (from 10<sup>-9</sup> to 10<sup>-3</sup> M) the
 
                            equations, for the
 
                            reaction constants (2), (3) and (7), (8) and  and for mass conservation (4), (5) and (9), (10), (11) were solved for the
 
                            species at equilibrium.</p>
 
                        Before cleavage
 
                        \begin{equation}
 
                        \ce{Axb + B <=>[Kd_x] A-b + B <=>[Kd_B] AB-b}
 
                        \end{equation}
 
                        \begin{align}
 
                        Kd_x &= \frac{[A-b]}{[Axb]} \label{1.1-2}\\
 
                        Kd_B &= \frac{[A-b] * [B]}{[AB - b]} \\
 
                        c_B &= [B] + [AB-b]\\
 
                        c_A-b &= [A-b]+[Axb]+[AB-b] \label{2.1-2}
 
                        \end{align}
 
                        After cleavage
 
                        \begin{equation}
 
                        \ce{Ab + B <=>[Kd_b] A + b + B <=>[Kd_B] AB + b}
 
                        \end{equation}
 
                        \begin{align}
 
                        Kd_b &= \frac{[A] * [b]}{[Ab]} \label{1.3-4}\\
 
                        Kd_B &= \frac{[A] * [B]}{[AB]} \\
 
                        c_A &= [A]+[AB]+[Ab]\\
 
                        c_B &= [B] +[AB]\\
 
                        c_b &= [b] + [Ab] \label{2.3-5}
 
                        \end{align}
 
 
                        The two systems are connected by the relation between the dissociation constants $Kd_b$ and
 
                        $Kd_x$,
 
                        \begin{equation}
 
                        Kd_x = Kd_b * 4 * 10^{-3} M^{-1}
 
                        \end{equation}
 
                        This relation approximates the higher affinity between the coils A and b when they are
 
                        covalently
 
                        linked by a short peptide (as in the system “Before cleavage”)
 
                        <x-ref>Moran1999, Zhou2004</x-ref>
 
                        .
 
                        <p>The results have been plotted varying the $K_d$ for the interaction of <b>A</b> with both <b>B</b> and <b>b</b>,
 
                            against
 
                            the difference [AB] - [AB-b], where [AB] is considered the signal after cleavage and [AB-b]
 
                            the
 
                            signal before cleavage (leakage). The system revealed that in order to obtain a high
 
                            difference
 
                            between signal and leakage a high affinity of the coil <b>B</b> for the coil <b>A</b> (low $Kd_B$) is
 
                            required,
 
                            while on the other hand an excessive destabilization of the autoinhibitory coil <b>b</b> (high
 
                            $Kd_b$)
 
                            would prevent the signal to be visible (
 
                            <ref>5.4.2.</ref>
 
                            ).
 
                        </p>
 
                        <div style="float:left; width:100%">
 
                            <figure data-ref="5.4.2.">
 
                                <img
 
                                        src="https://static.igem.org/mediawiki/2016/7/76/T--Slovenia--5.4.2.png">
 
                                <figcaption><b> Difference between [AB] and [AB-b] depending on the ratio of Kd
 
                                    values.</b><br/>
 
<p style="text-align:justify">The plots display the difference (M) between the signal before
 
                                    after
 
                                    and the proteolytic cleavage (left) and the concentration of the species responsible
 
                                    for
 
                                    leakage [AB-b] (right) in a range of different Kd values.
 
</p>
 
                                </figcaption>
 
                            </figure>
 
                        </div>
 
 
                        <p>This relationship suggested to try using a different version of the coiled-coils available in
 
                            the
 
                            toolset already used by the <a href="https://2009.igem.org/Team:Slovenia">Slovenian iGEM 2009
 
                                team</a>
 
                            <x-ref>Gradisar2011</x-ref>. In order to
 
                            obtain a detectable signal for <a
 
                                    href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic">logic operation
 
                                in
 
                                vivo </a> we decided
 
                            to use an inhibitory coiled-coil, which would be displaced by the second coiled-coil with
 
                            higher
 
                            affinity, only once is cleaved off its partner ($ Kd_B \lt Kd_b $). In doing so we selected
 
                            P3 as
 
                            <b>B</b> and
 
                            P3mS as <b>b</b>, these two coiled-coil peptides present only few substitutions and the higher
 
                            solubility of P3mS (<b>b</b>), which presents Gln and Ser instead of Ala in <i>b</i> and <i>c</i> position of the
 
                            heptads, would favour the dissociation. We also tried differently destabilized versions of
 
                            P3
 
                            and it turned out that, as in the forehead described model, an excessive destabilization
 
                            (obtained by substituting a and d positions with Ala) leads to a small difference of the
 
                            signal
 
                            before and after cleavage. Using a slightly destabilized coiled-coil (P3mS-2A), which
 
                            presents
 
                            only 2 alanines in the second heptad, the signal after cleavage reached its maximum of 16
 
                            folds (<a href="https://2016.igem.org/Team:Slovenia/Protease_signaling/Logic#autoinhibitory">Logic Figure 10</a>).</p>
 
                    </div>                    <h1 class="ui left dividing header"><span id="ref-title" class="section colorize">&nbsp;</span>References
 
                    </h1>
 
                    <div class="ui segment citing" id="references"></div>
 
                </div>
 
            </div>
 
        </div>
 
    </div>
 
</div>
 
<div>
 
<a href="//igem.org/Main_Page">
 
<img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%" style = "position: fixed; bottom:0%; right:1%;">
 
</a>
 
</div>
 
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 18:28, 19 October 2016

Protease inducible secretion

 Protease-based inducible secretion

  • Retention of proteins in ER lumen was demonstrated by confocal microscopy and detection of the protein in the cell medium.
  • A variant of TEVp active in the ER lumen was implemented to control protein secretion from the ER lumen.
  • Retention of proteins on the ER membrane was also demonstrated by confocal microscopy and detection of the protein in the cell medium.
  • Rapamycin induced cleavage was used for controlled and inducible secretion of proteins from the ER membrane.

 

To achieve a fast regulated cellular response resulting in the protein release, we decided to mimic the release of insulin from beta cells where the protein of interest is pre-formed and present intracellularly in secretory granules. In contrast to the specialized storage and release mechanism of insulin from beta cells we wanted to develop a more general and modular solution by making use of components already existing in different types of cells. Additionally, there should be minimal leakage from the protein depot in the uninduced state and after induction secretion from the cell should be fast.

Further explanation ...

Not many systems for the inducible release of proteins have been engineered to date. In one of the few examples Rivera et al. developed a system where the protein of interest was fused to a conditional aggregation domain (CAD) Rivera2000 . These domains form aggregates in the endoplasmic reticulum (ER) that are too large to exit the ER. After the addition of a small synthetic molecule, the CADs start to disaggregate and the protein of interest can be secreted. In the second example Chen et al. introduced a light-triggered secretion system. They also based their system on conditional aggregation; however they used the plant photoreceptor UVR8 which forms photolabile homodimers to make aggregates on the ER membrane. Upon light excitation the aggregates made by UVR8 started to disaggregate and were transported from the ER to the plasma membrane, but have not been observed in the cell supernatant Chen2013. The weakness of the two described systems is that they both rely on the exogenous chemical or physical signals instead of using a biochemical signal to induce the secretion, which means that they can’t be integrated into the signaling system that’s senses the cellular state. In order to better respond to the state of the cell or a logic circuit inside a cell we decided to develop an inducible secretion system based on the biochemical signal.


Many proteins that reside on the membrane or in the lumen of the ER contain short peptide signals. Proteins present in the lumen of the ER contain a KDEL C-terminal sequence (Lys-Asp-Glu-Leu) while type I transmembrane (TM) proteins contain a dilysine (KKXX) motif on their C-terminus (cytosolic side) Munro1987, Jackson1990, Stornaiuolo2003. . The mechanism that allows these proteins to stay in the ER is retrieval rather than retention. However, we decided to use the term retention for description of this process. ER luminal proteins interact with the KDEL receptor, a transmembrane ER resident protein. The cytosolic part of the KDEL receptor interacts with coat proteins I (COP I) which coat vesicles and are responsible for transporting proteins from the cis end of the Golgi apparatus (cis-GA) back to the ER. The KKXX motif present on type I TM proteins can directly interact with the COP I for retrieval Stornaiuolo2003, Letourneur1994 .

Our idea was that if we proteolytically remove the retention signal, the protein of interest would no longer be retrieved back to the ER and could be secreted from the cell. To achieve this we designed two types of secretory reporters, one type based on the luminal retention using KDEL sequence and the other based on the transmembrane retention with a KKMP sequence. In each case, the retention sequence was preceded by a TEVp cleavage site to allow for inducible secretion, which could be replaced by any other peptide target of our orthogonal protease set.

 Results

 Release from the ER lumen and secretion from the cell

To achieve and detect the inducible secretion from the ER lumen, we created two reporter constructs with a cleavable KDEL sequence targeted to the ER lumen: SEAPKDEL and TagRFPKDEL. Those proteins contained a protease target motif between the reporter domain and the KDEL domain, aimed to enable protein secretion after the proteolytic cleavage. We used a TEVp variant (erTEVp) for all of our experiments with luminal retention.

Further explanation ...

In order to rely on TEVp cleavage in the ER lumen, we had to take some additional considerations into account. Cesaratto et al. Cesaratto2015 reported that the wild type TEV protease is not active in the lumen of ER. They designed a TEV protease variant active in the endoplasmic reticulum by preventing two major types of post-translational modifications: N-glycosylation and cysteine oxidation. To avoid these inhibiting modifications, mutations N23Q, C130S and N171T were made. To ensure correct localization and accumulation of this TEVp variant inside the endoplasmic reticulum, we also attached an ER signal sequence at the N-terminus and KDEL at the C-terminus of the protein.


Cleavage with ER-residing protease (erTEV) facilitates secretion of reporter from cells.

(A) Scheme of the reporter with cleavable KDEL retention signal and protease target motif. (B) The reporter with the KDEL retention signal was localized in the ER. HEK293T cells were transfected with the indicated reporters and in (C) also with erTEVp. Localization was detected with confocal microscopy. (C)The reporter was detected in the medium of cells only when cotransfected with erTEVp. HEK293T cells were transfected with the indicated constructs. Reporters were detected with WB in the concentrated medium.

When the TagRFPKDEL reporter (1A) was expressed in the ER without an active erTEVp we confirmed its localization in the ER with confocal microscopy (1B). Additionally, we could not detect any TagRFP in the cell medium with Western blotting. When erTEVp was present and active in the ER, the KDEL sequence was removed from the reporter and the protein was secreted from the cell, which we detected with Western blot (1C). This demonstrated that proteolytic activity in the ER can regulate protein secretion.

Using SEAPKDEL we were able to confirm that the reporter is not present in the cell medium without coexpression of erTEVp. When erTEVp was cotransfected with the reporter, we detected a large increase in enzymatic activity in the medium (2).

Secretion of the SEAP reporter from ER lumen by cleavage with ER-resident protease.

HEK293T cells were transfected with indicated reporter and erTEVp. Increased SEAP activity was detected in the medium of cells expressing both reporter and erTEVp protease.

 Release from the ER membrane and secretion from the cell

The second approach to regulate protein secretion from the ER by protease was to used KKMP ER retention peptide linked to the transmembrane protein with a protease target motif on the cytoplasmic side, N-terminally to the KKMP peptide. A transmembrane (TM) domain from the B-cell receptor (Bba_K157010) was used for the integration of target proteins in the ER membrane. Similar as described above, two reporter constructs with SEAP and TagRFP (SEAP:TMKKMP and TagRFP:TMKKMP) were designed and the constructs also contained a signal sequence at their N-terminus and a proteolytically cleavable ER retention signal at their C-terminus. In case of transmembrane targeted reporters we used the KKMP retention signal preceded by 3 copies of the TEVp cleavage site on the cytosolic side of the membrane.

Additionally, either one or four furin cleavage sites were inserted between the protein of interest on the luminal side of the ER, which enable cleavage of the reporter protein from the membrane, but this could only occur after the KKMP had been removed and the protein could enter the trans-GA. Furin is a native cellular endoprotease that is active only in the trans-GA.Henrich2003 This allowed us to design our constructs so that they are cleaved off of the membrane without any modified scar sequences attached to them.

Localization of protease-responsive reporters on ER depending on the proteolysis.

(A) The transmembrane reporter without the KKMP retention signal was localized both on the ER and plasma membrane. (B) The transmembrane reporter with the KKMP retention signal was localized exclusively on the ER membrane. (C) After cleavage of the KKMP retention signal, the transmembrane reporter translocated to the plasma membrane. HEK293T cells were transfected with the indicated reporters and in (C) also with TEVp. Localization was detected with confocal microscopy. Each image is accompanied with a scheme of the transfected construct. (D) Glycosylated reporter was detected in the medium of cells transfected with the transmembrane reporter without the KKMP retention signal. HEK293T cells were transfected with the indicated constructs. Reporters were detected with WB in the concentrated medium. In lane 2, sample was incubated with N-glycosidase F.

Inducible secretion of reporter localized on ER membrane.

SEAP activity was increased in the medium of cells induced with rapamycin. Scheme of the transmembrane reporter with cleavable KKMP retention signal and inducible protease. HEK293T cells were transfected with the indicated reporter and rapamycin inducible split proteases. Uncleaved proteases were used as positive control.

Localization of the TagRFP:TMKKMP reporter was confirmed by the confocal microscopy. We used a control reporter without the KKMP retention signal (TagRFP:TM) which we detected both on the ER and the plasma membrane (3A). In case of present KKMP retention signal, the reporter was detected only on the ER (3B). When TagRFP:TMKKMP was coexpressed with TEVp, localization of the reporter was similar to the localization of the positive control (TagRFP:TM) on the plasma membrane and the ER (3C).

A band with a slightly larger apparent size than the expected size of TagRFP (28 kDa) was detected by Western blotting in cells transfected with TagRFP:TM. We showed that the unexpected difference in size was due to glycosylation, as we detected the protein at the expected size after deglycosylation of the medium sample with N-glycosidase F. We were unable to detect a corresponding band in the medium of cells transfected with TagRFP:TMKKMP in the absence of the protease.

Together, these results confirm that localization and secretion of the protein reporter with the transmembrane domain depends on the presence and proteolysis of the KKMP retention signal and that proteolysis can be used to induce secretion of already synthesized protein.

Finally, we cotransfected cells with SEAP:TMKKMP and rapamycin-inducible split TEVp. We detected increased levels of the SEAP enzymatic activity in the medium of cells stimulated with rapamycin, which was dose dependent with respect to the amount of the transfected reporter-coding plasmid (4). These results confirm that secretion of a target protein can be made inducible by an externally supplied signal, processed through our split protease system.

 References