Difference between revisions of "Team:Hannover/Reference"

Line 58: Line 58:
 
<h1>References</h1>
 
<h1>References</h1>
 
<ol id="refs">
 
<ol id="refs">
<li id="1">Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.</li>
+
<li>Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.</li>
  
<li id="2">Boch, J. et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
+
<li>Boch, J.,et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (326), pp. 1509-1512.</li>
  
<li id="3">Boch, J. et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
+
<li>Camarero, J. A., Fushman, D., Cowburn, D., and Muir, T. W. (2001). Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.</li>
  
<li id="4">Camarero, J. A., Fushman, D., Cowburn, D. & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry, pp. 2479-2484.</li>
+
<li>Evans, T. C., Benner, J., and Xu, M.-Q. (1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.</li>
  
<li id="5">Camarero, J. A., Fushman, D., Cowburn, D. & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry, pp. 2479-2484.</li>
+
<li>Geissler, R.,et al. (2011). Transcriptional activators of human genes with programmable DNA-specificity. PLOS one .</li>
  
<li id="6">Evans, T. C., Benner, J. & Xu, M.-Q. (1999). The Cyclization and Polymerisation of Bacterially Expressed Proteins Using Modified Self-splicing Inteins. The Journal of Biological Chemistry, 274 (26), pp. 18359-18363.</li>
+
<li>iGEM Heidelberg. (2014). The Ring of Fire. Retrieved 10 13, 2016, from https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization</li>
  
<li id="7">Geissler, R. et al. (2011). Transcriptional Activators of Human Genes with Programmable DNA-Specificity. PLOS one.</li>
+
<li>Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7</li>
  
<li id="8">Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7</li>
+
<li>Iwai, H., Lingel, A., and Plückthun, A. (2001). Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.</li>
  
<li id="9">Iwai, H., Lingel, A. & Plückthun, A. (2001). Cyclic Green Fluorescent Protein Produced in Vivo Using an Artificially Split PI-PfuI Intein from Pyrococcus furiosus. The Journal of Biological Chemistry, 276 (19), pp. 16548-16554.</li>
+
<li>Lonzaric, J., et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.</li>
  
<li id="10">iGEM Team Heidelberg (2014). The Ring of Fire. Retrieved 10 13, 2016, from CIRCULARIZATION - Transforming an enzyme into a ring of fire: https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization</li>
+
<li>Miller, J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148.
 +
Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.</li>
  
<li id="11">Lonzaric, J. et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research, 44 (3), pp. 1471-1481.</li>
+
<li>Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia</li>
  
<li id="12">Miller, J. et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29 (2), pp. 143-148.</li>
+
<li>Qasim, W., et al. (2015). First clinical application of TALEN engineered universal CAR19 T cells in B-ALL. Blood , 126 (23), p. 2046.</li>
  
<li id="13">Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.</li>
+
<li>Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/</li>
  
<li id="14">Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia</li>
+
<li>Streubel, J., et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.</li>
  
<li id="15">Qasim, W. et al. (2015). First Clinical Application of Talen Engineered Universal CAR19 T Cells in B-ALL. Blood , 126 (23), p. 2046.</li>
+
<li>Tavassoli, A., and Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.</li>
  
<li id="16">Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/</li>
+
<li>Wood, D. W., and Camarero, J. A. (2014). Intein applications: from protein purification and labeling to metabolic control methods. The Journal of Biological Chemistry , 289 (21), pp. 14512-14519.</li>
 
+
<li id="17">Streubel, J. et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.</li>
+
 
+
<li id="18">Tavassoli, A. & Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols, 2 (5), pp. 1126-1133.</li>
+
 
+
<li id="19">Weber, E. et al. (2011). Assembly of Designer TAL Effectors by Golden Gate Cloning. PloS One, 6 (5).</li>
+
 
+
<li id="20">Williams, N. K. (2002). In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein. The Journal of Biological Chemistry, 227 (10), pp. 7790-7798.</li>
+
 
+
<li id="21">Wood, D. W. & Camarero, J. A. (2014). Intein Applications: From Protein Purification and Labeling to Metabolic Control Methods. The Journal of Biological Chemistry, 289 (21), pp. 14512-14519.</li>
+
 
</ol>
 
</ol>
 
</div>
 
</div>

Revision as of 20:39, 19 October 2016

References

  1. Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.
  2. Boch, J.,et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (326), pp. 1509-1512.
  3. Camarero, J. A., Fushman, D., Cowburn, D., and Muir, T. W. (2001). Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.
  4. Evans, T. C., Benner, J., and Xu, M.-Q. (1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.
  5. Geissler, R.,et al. (2011). Transcriptional activators of human genes with programmable DNA-specificity. PLOS one .
  6. iGEM Heidelberg. (2014). The Ring of Fire. Retrieved 10 13, 2016, from https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization
  7. Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7
  8. Iwai, H., Lingel, A., and Plückthun, A. (2001). Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.
  9. Lonzaric, J., et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.
  10. Miller, J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148. Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.
  11. Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia
  12. Qasim, W., et al. (2015). First clinical application of TALEN engineered universal CAR19 T cells in B-ALL. Blood , 126 (23), p. 2046.
  13. Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/
  14. Streubel, J., et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.
  15. Tavassoli, A., and Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.
  16. Wood, D. W., and Camarero, J. A. (2014). Intein applications: from protein purification and labeling to metabolic control methods. The Journal of Biological Chemistry , 289 (21), pp. 14512-14519.
Sponsors

Our project would not have been possible without financial support from multiple sponsors and supporters.
Carl Roth IDT Leibniz University Hannover Leibniz Universitätsgesellschaft e.V. New England Biolabs Promega Sartorius SnapGene