Alexandra m (Talk | contribs) |
|||
(22 intermediate revisions by 3 users not shown) | |||
Line 7: | Line 7: | ||
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,600,700,600italic,400italic,700italic,300,300italic' rel='stylesheet' type='text/css'> | <link href='https://fonts.googleapis.com/css?family=Open+Sans:400,600,700,600italic,400italic,700italic,300,300italic' rel='stylesheet' type='text/css'> | ||
− | + | <!-- Nos feuilles de style --> | |
− | + | <link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:IONIS_Paris-style-css-template?action=raw&ctype=text/css" /> | |
− | + | ||
+ | <link rel="stylesheet" type="text/css" href="https://2016.igem.org/Template:IONIS_Paris-style-css?action=raw&ctype=text/css" /> | ||
Line 19: | Line 20: | ||
<div class="col-sm-12"> | <div class="col-sm-12"> | ||
<div class="banner_title"> | <div class="banner_title"> | ||
− | <h1>Biobrick design</h1> | + | <h1 id="back_to_the_top">Biobrick design</h1> |
</div> | </div> | ||
</div> | </div> | ||
Line 52: | Line 53: | ||
</figure> | </figure> | ||
<div class="blog_heading"> | <div class="blog_heading"> | ||
− | <h4><a href=" | + | <h4><a href="https://static.igem.org/mediawiki/2016/8/81/T--Ionis_Paris--AtthelabFig1.png"></a></h4> |
</div> | </div> | ||
</div> | </div> | ||
Line 59: | Line 60: | ||
− | <p><i>Figure 1: General structure of a BioBrick (source <a href="http://parts.igem.org/Plasmid_backbones/Assembly">here </a></i></p><br/> | + | <p><i>Figure 1: General structure of a BioBrick (source <a href="http://parts.igem.org/Plasmid_backbones/Assembly">here </a>)</i></p><br/> |
<p>For the assembly of our biobrick we use the BioBrick RFC[10] assembly standard because it is the standard of the IGEM competition and most of the parts available on the registry match this standard. The BioBrick RFC[10] assembly standard is based on the use of a prefix and a suffix placed at the extremities of each part to be assembled in order to obtain standard BioBricks that are compatible and thus can be easily assembled.</p><br/> | <p>For the assembly of our biobrick we use the BioBrick RFC[10] assembly standard because it is the standard of the IGEM competition and most of the parts available on the registry match this standard. The BioBrick RFC[10] assembly standard is based on the use of a prefix and a suffix placed at the extremities of each part to be assembled in order to obtain standard BioBricks that are compatible and thus can be easily assembled.</p><br/> | ||
</div> | </div> | ||
Line 70: | Line 71: | ||
</li> | </li> | ||
− | <p>Prefix and suffix provide a method to obtain standard genetic construction. Their exact sequences are available in Figure | + | <p>Prefix and suffix provide a method to obtain standard genetic construction. Their exact sequences are available in Figure 2. Each one includes two different restriction sites: </p> |
<ul><li><p> - EcoRI and XbaI in the prefix</p> | <ul><li><p> - EcoRI and XbaI in the prefix</p> | ||
</li> | </li> | ||
Line 79: | Line 80: | ||
<p>For protein coding regions (that starts with ATG), there is an adapted prefix.</p> | <p>For protein coding regions (that starts with ATG), there is an adapted prefix.</p> | ||
<figure class="postImg waves-effect"> | <figure class="postImg waves-effect"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/e/e7/T--Ionis_Paris--AtthelabFig2.png" alt=""> |
</figure> | </figure> | ||
+ | <p><i>Figure 2: Prefix and suffix sequences</i></p><br/> | ||
<p>All components of the genetic circuit are added to the system with these prefix and suffix. Once added to the system, in order to be compatible with the RFC[10] standard, a part does not have to contain these four restriction sites, they have to be unique to the prefix and suffix.</p> | <p>All components of the genetic circuit are added to the system with these prefix and suffix. Once added to the system, in order to be compatible with the RFC[10] standard, a part does not have to contain these four restriction sites, they have to be unique to the prefix and suffix.</p> | ||
<li><p>Assembling method</p> | <li><p>Assembling method</p> | ||
</li> | </li> | ||
− | + | <img src="https://static.igem.org/mediawiki/2016/8/82/T--Ionis_Paris--AtthelabFig3.png" alt=""> | |
+ | </figure> | ||
+ | <p><i>Figure 3: Assembling method</i></p><br/> | ||
<li><p>Scar</p> | <li><p>Scar</p> | ||
Line 118: | Line 122: | ||
<br/> | <br/> | ||
<p>The biosensor cell contains a genetic circuit, located on a plasmid support, allowing the expression of genes involved in the detection of the pollutant. | <p>The biosensor cell contains a genetic circuit, located on a plasmid support, allowing the expression of genes involved in the detection of the pollutant. | ||
− | The Pr promoter is a constitutive promoter driving the transcription of the XylR gene, coding for the XylR protein. The XylR protein, a transcriptional regulatory protein for the Pu promoter, is activated by aromatic hydrocarbons that carry a methyl group (like toluene and xylene). In our biosensor, the Pu promoter allows the transcription of the bioluminescent reporter gene GLuc, coding for the <i>Gaussia luciferase</i>. When this enzyme reacts with its substrate, a substance called | + | The Pr promoter is a constitutive promoter driving the transcription of the XylR gene, coding for the XylR protein. The XylR protein, a transcriptional regulatory protein for the Pu promoter, is activated by aromatic hydrocarbons that carry a methyl group (like toluene and xylene). In our biosensor, the Pu promoter allows the transcription of the bioluminescent reporter gene GLuc, coding for the <i>Gaussia luciferase</i>. When this enzyme reacts with its substrate, a substance called the Coelenterazine, it emits luminescence.</p> |
<figure class="postImg waves-effect"> | <figure class="postImg waves-effect"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/d/d6/T--Ionis_Paris--AtthelabFig4.png" alt=""> |
</figure> | </figure> | ||
<div class="blog"> | <div class="blog"> | ||
Line 130: | Line 134: | ||
In Figure 4 below, the map of our plasmid is represented in a simplified way, and is composed of the pSB1C3 backbone and the biosensor part.</p> | In Figure 4 below, the map of our plasmid is represented in a simplified way, and is composed of the pSB1C3 backbone and the biosensor part.</p> | ||
<figure class="postImg waves-effect"> | <figure class="postImg waves-effect"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/8/87/T--Ionis_Paris--AtthelabFig5.png" alt=""> |
</figure> | </figure> | ||
+ | <p><i>Figure 4: Our plasmid map</i></p> | ||
<div class="blog_top"> | <div class="blog_top"> | ||
Line 163: | Line 168: | ||
<div class="col-md-8"> | <div class="col-md-8"> | ||
<figure class="postImg waves-effect"> | <figure class="postImg waves-effect"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/9/9e/T--Ionis_Paris--AtthelabFig6.png" alt=""> |
</figure> | </figure> | ||
<div class="blog_heading"> | <div class="blog_heading"> | ||
− | < | + | <p><i>Figure 6: Standard structure of high copy number assembly plasmid backbone. (source <a href="http://parts.igem.org/Plasmid_backbones/Assembly">here</a>)</i></p> |
− | + | ||
</div> | </div> | ||
</div> | </div> | ||
Line 176: | Line 180: | ||
<a href="http://parts.igem.org/Part:pSB1C3"> | <a href="http://parts.igem.org/Part:pSB1C3"> | ||
<figure class="postImg waves-effect"> | <figure class="postImg waves-effect"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/8/8a/T--Ionis_Paris--AtthelabFig7.png" alt=""> |
</figure> | </figure> | ||
</a> | </a> | ||
<div class="blog_heading"> | <div class="blog_heading"> | ||
− | <h4><a href="http://parts.igem.org/Part:pSB1C3" >Figure 7: Map of pSB1C3 plasmid.</a></ | + | <h4><a href="http://parts.igem.org/Part:pSB1C3" ></a></h4> |
+ | <p><i>Figure 7: Map of the pSB1C3 plasmid (source <a href="http://parts.igem.org/Part:pSB1C3">here</a>)</i></p> | ||
</div> | </div> | ||
Line 186: | Line 191: | ||
</div> | </div> | ||
− | |||
<div class="blog"> | <div class="blog"> | ||
Line 197: | Line 201: | ||
<h3>XylR gene</h3> | <h3>XylR gene</h3> | ||
</div> | </div> | ||
− | <p>The | + | <p>The 1704 bp XylR gene, encodes for the XylR protein and is regulated by the Pr promoter in its native context. This gene is available on the iGEM Registry of Standard Biological Parts (<a href="http://parts.igem.org/Part:BBa_K1834844" ><font color="DeepPink">BBa_K1834844</font></a>). The XylR that we designed for our biosensor is a bit different because it is optimized for E.Coli DH5-Alpha and for IDT synthesis. .</p> |
<p>The XylR protein, mined from <i>Pseudomonas putida</i>, is involved in the transcriptional activation of the toluene recognition system. This regulatory protein allows the detection of aromatic hydrocarbons that carry a methyl group, i.e. xylene, toluene and 1-chloro-3-methyl-benzene. The A domain of the XylR protein (sensing domain), binds to the pollutant molecule. This leads to the formation of a tetramer. The C domain is involved in the dimerization of XylR, which is ATP dependent. The made up tetramer acts as an activator transcriptional factor for the Pu promoter through the DNA binding D domain.</p><br/> | <p>The XylR protein, mined from <i>Pseudomonas putida</i>, is involved in the transcriptional activation of the toluene recognition system. This regulatory protein allows the detection of aromatic hydrocarbons that carry a methyl group, i.e. xylene, toluene and 1-chloro-3-methyl-benzene. The A domain of the XylR protein (sensing domain), binds to the pollutant molecule. This leads to the formation of a tetramer. The C domain is involved in the dimerization of XylR, which is ATP dependent. The made up tetramer acts as an activator transcriptional factor for the Pu promoter through the DNA binding D domain.</p><br/> | ||
+ | |||
+ | <figure class="postImg waves-effect"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/5/58/T--Ionis_Paris--AtthelabFig8.png" alt=""> | ||
+ | </figure> | ||
+ | <p><i>Figure 8: The XylR CDS structure</i></p> | ||
<div class="blog"> | <div class="blog"> | ||
+ | <p></ | ||
<h3>Pu promoter</h3> | <h3>Pu promoter</h3> | ||
</div> | </div> | ||
Line 210: | Line 220: | ||
</div> | </div> | ||
<p>This gene is found in a well-known organism, the copepod Gaussia princeps. It encodes for the Gaussia luciferase enzyme, also known as GLuc, which is involved in a bioluminescence process. This enzyme degrades its substrate, coelenterazine, into a product, celenteramide. With an optimal substrate level, this step produces energy in the form of light that can be detected with a fixed spectrophotometer at 488nm.</p> | <p>This gene is found in a well-known organism, the copepod Gaussia princeps. It encodes for the Gaussia luciferase enzyme, also known as GLuc, which is involved in a bioluminescence process. This enzyme degrades its substrate, coelenterazine, into a product, celenteramide. With an optimal substrate level, this step produces energy in the form of light that can be detected with a fixed spectrophotometer at 488nm.</p> | ||
− | <p>We chose to use the GLuc-His part, a gene of 522 bp, available on the iGEM registry at the (BBa_K1732027 | + | <p>We chose to use the GLuc-His part, a gene of 522 bp, available on the iGEM registry at the (BBa_K1732027) which codes for the Gaussia luciferase followed by 6 histidines and optimized it for E.coli. In our plasmid, this gene is positioned after an inducible promoter, the Pu promoter, to report the activation of the toluene recognition system.<br/> |
The Gaussia luciferase needs the addition of substrate to ensure its activity because this molecule is not synthetized by our biosensor. Therefore, in the laboratory, luciferase substrate can be added at the same time in each sample ensuring that every measurement will be taken at the same time. This allow a better consistency between our different results. Also, due to its secreted form, lysing cells in order to assay GLuc activity is not necessary.</p> | The Gaussia luciferase needs the addition of substrate to ensure its activity because this molecule is not synthetized by our biosensor. Therefore, in the laboratory, luciferase substrate can be added at the same time in each sample ensuring that every measurement will be taken at the same time. This allow a better consistency between our different results. Also, due to its secreted form, lysing cells in order to assay GLuc activity is not necessary.</p> | ||
Line 219: | Line 229: | ||
<p>Even though bioluminescence is currently used mainly for transcription study and cell imaging, this method become increasingly popular for quantitative analysis. [3] For more information about bioluminescence and the Gaussia luciferase, <a href="https://2016.igem.org/Single_blog-full.html">click here ! </a></p><br/> | <p>Even though bioluminescence is currently used mainly for transcription study and cell imaging, this method become increasingly popular for quantitative analysis. [3] For more information about bioluminescence and the Gaussia luciferase, <a href="https://2016.igem.org/Single_blog-full.html">click here ! </a></p><br/> | ||
− | <p>[1] Inouye, S., Sahara-Miura, Y., Sato, J., Iimori, R., Yoshida, S., and Hosoya, T. (2013). Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: Comparison of substrate specificity for C2-modified coelenterazines. Protein Expression and Purification 88, 150–156. | + | <p>[1] Inouye, S., Sahara-Miura, Y., Sato, J., Iimori, R., Yoshida, S., and Hosoya, T. (2013). Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: Comparison of substrate specificity for C2-modified coelenterazines. Protein Expression and Purification 88, 150–156.<br/> |
− | [2] S. Inouye, Y. Sahara, Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps, Biochem. Biophys. Res. Commun. 365 (2008) 96–101 | + | [2] S. Inouye, Y. Sahara, Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps, Biochem. Biophys. Res. Commun. 365 (2008) 96–101<br/> |
[3]Wood, K (2011), The bioluminescence advantage, laboratorynews, available on: http://www.labnews.co.uk/features/the-bioluminescence-advantage-13-09-2011/</p> | [3]Wood, K (2011), The bioluminescence advantage, laboratorynews, available on: http://www.labnews.co.uk/features/the-bioluminescence-advantage-13-09-2011/</p> | ||
Line 238: | Line 248: | ||
<p>The weaker RBS is a sequence of 11 bp with an efficiency of 0.01, derivative of BBa_B0030. This RBS is available on the iGEM registry at this ID access: BBa_0033. <br/>An other weak RBS is available on the iGEM registry at this ID access: BBa_B0031. This RBS, a sequence of 14 bp derivative of BBa_B0030, has an efficiency of 0.07.</p><br/> | <p>The weaker RBS is a sequence of 11 bp with an efficiency of 0.01, derivative of BBa_B0030. This RBS is available on the iGEM registry at this ID access: BBa_0033. <br/>An other weak RBS is available on the iGEM registry at this ID access: BBa_B0031. This RBS, a sequence of 14 bp derivative of BBa_B0030, has an efficiency of 0.07.</p><br/> | ||
− | < | + | <p> |
In our project, we chose to use the stronger RBS, the Elowitz RBS (BBa_B0034), in order to have a maximal production rate. Indeed, as we already specified, the induced luminescence has to be proportional to the pollutant rate. Therefore, when pollutant molecules enter in the bacteria, the XylR protein has to be present in an enough amount and the Gaussia luciferase has to be produced rapidly in an amount that is proportional to the pollutant amount. This allows a luminescent response corresponding to the pollutant rate. | In our project, we chose to use the stronger RBS, the Elowitz RBS (BBa_B0034), in order to have a maximal production rate. Indeed, as we already specified, the induced luminescence has to be proportional to the pollutant rate. Therefore, when pollutant molecules enter in the bacteria, the XylR protein has to be present in an enough amount and the Gaussia luciferase has to be produced rapidly in an amount that is proportional to the pollutant amount. This allows a luminescent response corresponding to the pollutant rate. | ||
− | </ | + | </p> |
<div class="blog"> | <div class="blog"> | ||
<h3>Double terminator</h3> | <h3>Double terminator</h3> | ||
Line 248: | Line 258: | ||
The first one of 129 bp, consisting of BBa_B0010 and BBa_B0012 as shown in Figure 4, available on the iGEM registry at this ID access: BBa_B0015. It is the most used terminator for forward transcription with a forward-efficiency of 0,984 according to measurements done by Caitlin Conboy, and of 0,97 according to measurements done by Jason Kelly. Procedures used for these measurements are explained in the <a href="http://parts.igem.org/Help:Terminators/Measurement">IGEM registry</a>.</p> | The first one of 129 bp, consisting of BBa_B0010 and BBa_B0012 as shown in Figure 4, available on the iGEM registry at this ID access: BBa_B0015. It is the most used terminator for forward transcription with a forward-efficiency of 0,984 according to measurements done by Caitlin Conboy, and of 0,97 according to measurements done by Jason Kelly. Procedures used for these measurements are explained in the <a href="http://parts.igem.org/Help:Terminators/Measurement">IGEM registry</a>.</p> | ||
− | |||
+ | <figure class="postImg waves-effect"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/4/4a/T--Ionis_Paris--AtthelabFig9.png" alt=""> | ||
+ | </figure> | ||
+ | |||
+ | |||
+ | |||
+ | <p><i>Figure 9: B0015 double terminator structure (Source <a href="http://parts.igem.org/Part:BBa_B0015">here</a>)</i></p> | ||
+ | |||
+ | <p>The second one of 95 bp, consisting of BBa_B0011 and BBa_B0012 as shown in Figure 9, available on the iGEM registry at this ID access: BBa_B0014. It is a bidirectional terminator with a forward-efficiency of 0,604 according to measurements done by Caitlin Conboy and of 0,96 according to measurements done by Jason Kelly, and with a reverse-efficiency of 0,86 according to measurements done by Jason Kelly.</p> | ||
+ | |||
+ | <figure class="postImg waves-effect"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/c/c4/T--Ionis_Paris--AtthelabFig10.png" alt=""> | ||
+ | </figure> | ||
+ | |||
+ | |||
+ | |||
+ | <p><i>Figure 10: B0014 double terminator structure (Source <a href="http://parts.igem.org/Part:BBa_B0014">here</a>)</i></p> | ||
</div> | </div> | ||
Line 365: | Line 391: | ||
<!-- ====END BLOG TABLE==== --> | <!-- ====END BLOG TABLE==== --> | ||
− | + | ||
− | + | ||
− | + | <!-- ====START SOCIAL Link==== --> | |
− | + | <div class="footer_social"> | |
− | + | <div class="container-fluid"> | |
− | + | <div class="row"> | |
− | + | <ul class="ft_top clearfix"> | |
− | + | <li class="waves-effect waves-light"> | |
− | + | <a href="https://www.facebook.com/ionisigem/?fref=ts" target="_blank"> | |
− | + | <i class="zmdi zmdi-facebook "></i>Facebook | |
− | + | </a> | |
− | + | </li> | |
− | + | <li class="waves-effect waves-light"> | |
− | + | <a href="https://twitter.com/igem_ionis" target="_blank"> | |
− | + | <i class="zmdi zmdi-twitter"></i>Twitter | |
− | + | </a> | |
− | + | </li> | |
− | + | <li class="waves-effect waves-light"> | |
− | + | <a href="https://www.youtube.com/channel/UC0RyQsB5YpweSRBYQlAdZDA" target="_blank"> | |
− | + | <i class="zmdi zmdi-youtube"></i>youtube | |
− | + | </a> | |
− | + | </li> | |
− | + | <li class="waves-effect waves-light"> | |
− | + | <a href="https://www.linkedin.com/company/igem-ionis" target="_blank"> | |
− | + | <i class="zmdi zmdi-linkedin"></i>LinkedIn | |
− | + | </a> | |
− | + | </li> | |
− | + | ||
− | + | </ul> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
</div> | </div> | ||
</div> | </div> | ||
− | + | </div> | |
− | + | <!-- ====END FOOTER TOP==== --> | |
− | + | ||
− | + | <!-- ====START FOOTER AREA==== --> | |
− | + | <footer class="footer_area"> | |
− | + | <div class="footer_middle"> | |
− | + | <div class="container"> | |
− | + | <div class="row"> | |
− | + | <div class="col-xs-12"> | |
− | + | <div class="scroll_area"> | |
+ | <div class="sroll_top"> | ||
+ | <a href="#ancre"> <i class="zmdi zmdi-chevron-up btn waves-effect"> </i> </a> | ||
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
+ | </div> | ||
+ | <div class="row"> | ||
<div class="row"> | <div class="row"> | ||
<div class="col-lg-5 col-md-5 col-sm-12"> | <div class="col-lg-5 col-md-5 col-sm-12"> | ||
<div class="middle_content"> | <div class="middle_content"> | ||
− | <h4> | + | <h4>iGEM IONIS</h4> |
− | <p> | + | <p> We're a group of six different schools from the IONIS Education Group. For this |
− | + | competition we wanted to take advantage of the multiple schools and fields of activity | |
− | + | given by the IONIS education group to create a solid project.</p> | |
+ | <a href="https://2016.igem.org/Team:Ionis_Paris/Team">Read More</a> | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
<div class="col-lg-3 col-lg-offset-1 col-md-4 col-sm-7"> | <div class="col-lg-3 col-lg-offset-1 col-md-4 col-sm-7"> | ||
<div class="footer_Widgets"> | <div class="footer_Widgets"> | ||
Line 432: | Line 456: | ||
<ul> | <ul> | ||
<li><i class="zmdi zmdi-pin"></i> | <li><i class="zmdi zmdi-pin"></i> | ||
− | <span>Location: | + | <span>Location: 66 Rue Guy Môquet, 94800 Villejuif, France</span> |
− | + | ||
− | + | ||
− | + | ||
</li> | </li> | ||
+ | |||
<li><i class="zmdi zmdi-email"></i> | <li><i class="zmdi zmdi-email"></i> | ||
− | <a href="mailto: | + | <a href="mailto:igem.ionis@gmail.com">email: igem.ionis@gmail.com</a> |
− | + | ||
− | + | ||
− | + | ||
</li> | </li> | ||
+ | |||
</ul> | </ul> | ||
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | <div class="col-lg-3 col-md-3 col-sm-5"> | |
<div class="footer_Widgets"> | <div class="footer_Widgets"> | ||
− | <h4> | + | <h4>Download the app</h4> |
− | <figure class="widget_gallery"> | + | <a href="https://itunes.apple.com/us/app/quantifly/id1166875690?ls=1&mt=8" |
− | + | target="_blank" style="target-new: tab;"> | |
− | + | <figure class="widget_gallery"> | |
− | + | <div class="RXcircleEffect"></div> | |
− | < | + | <img src="https://static.igem.org/mediawiki/2016/8/8d/IONIS_IGEM_paris_logo_apple.png" |
+ | alt="" /> | ||
+ | <figcaption> | ||
<i class="zmdi zmdi-link"></i> | <i class="zmdi zmdi-link"></i> | ||
− | </ | + | </figcaption> |
− | </ | + | </figure> |
− | </ | + | </a> |
− | <figure class="widget_gallery"> | + | <a href="https://play.google.com/store/apps/details?id=fr.plnech.quantifly&hl=en" |
− | + | target="_blank" style="target-new: tab;"> | |
− | + | <figure class="widget_gallery"> | |
− | + | <div class="RXcircleEffect"></div> | |
− | < | + | <img src="https://static.igem.org/mediawiki/2016/6/65/IONIS_IGEM_paris_google_play.png" |
+ | alt="" /> | ||
+ | <figcaption> | ||
<i class="zmdi zmdi-link"></i> | <i class="zmdi zmdi-link"></i> | ||
− | + | </figcaption> | |
− | + | </figure> | |
− | + | </a> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
</div> | </div> | ||
+ | |||
</div> | </div> | ||
</div> | </div> | ||
Line 515: | Line 507: | ||
<div class="col-md-7 fix_p_l"> | <div class="col-md-7 fix_p_l"> | ||
<nav> | <nav> | ||
− | <ul class="ft_bottom"> | + | <ul class="ft_bottom"> |
− | <li><a href=" | + | <li><a href="https://2016.igem.org/Team:Ionis_Paris">Home</a></li> |
− | <li><a href=" | + | <li><a href="https://2016.igem.org/Team:Ionis_Paris/Working_at_La_Paillasse">in the Lab</a></li> |
− | <li><a href=" | + | <li><a href="https://2016.igem.org/Team:Ionis_Paris/Measurement"> Side Projects</a></li> |
− | <li><a href=" | + | <li><a href="https://2016.igem.org/Team:Ionis_Paris/Parts">Results</a></li> |
− | <li><a href=" | + | <li><a href="https://2016.igem.org/Team:Ionis_Paris/HPintro">Human |
− | <li><a href=" | + | Practice</a></li> |
+ | <li><a href="https://2016.igem.org/Team:Ionis_Paris/Team">Team</a></li> | ||
</ul> | </ul> | ||
</nav> | </nav> | ||
Line 527: | Line 520: | ||
<div class="col-md-5 fix_p"> | <div class="col-md-5 fix_p"> | ||
<div class="ft_paragraph"> | <div class="ft_paragraph"> | ||
− | <p> | + | <p>©IONIS_IGEM_2016</a>.</p> |
</div> | </div> | ||
− | </div> | + | </div> |
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | </div> | + | </div> |
− | + | </footer> | |
− | + | <!-- ====END FOOTER AREA==== --> | |
− | + | ||
− | + | <!-- ====Google Maps API==== --> | |
− | + | <script src="https://maps.googleapis.com/maps/api/js"></script> | |
− | + | ||
− | + | <!-- Nos scripts --> | |
+ | <script type="text/javascript" src="https://2016.igem.org/wiki/index.php?title=Template:IONIS_PARIS_JS&action=raw&ctype=text/javascript"></script> | ||
+ | |||
</html> | </html> |
Latest revision as of 20:51, 19 October 2016
In the context of iGEM, our genetic circuit, encoded as a plasmid, is defined as a BioBrick. The different elements of the genetic circuit contribute to the function of the BioBrick. In the iGEM registry, we can distinguish 2 components that compose a plasmid: the plasmid backbone and the BioBrick part (see Figure 2).
Principle OF THE BIOBRICK DESIGN IN AN IGEM CONTEXT
Biobrick definition