Difference between revisions of "Template:Team:TU-Eindhoven Wrap HTML"

 
(40 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
<html>
 
<html>
 +
<head>
 +
<title> iGEM TU Eindhoven </title>
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2016.igem.org/Template:TU-Eindhoven/CSS?action=raw&ctype=text/css" />
 +
<script type="text/javascript" src="https://2016.igem.org/Template:TU-Eindhoven/Javascript?
 +
action=raw&ctype=text/javascript"></script>
 +
</head>
 
<div class="Website">
 
<div class="Website">
<div class="Logo_Panel">
 
<div class="Logo">
 
<a href="https://2016.igem.org/Team:TU-Eindhoven">
 
                <img id="TU_iGEM_Logo" src="https://static.igem.org/mediawiki/2016/d/d0/TU_Eindhoven--iGEM_Logo.png">
 
            </a>
 
</div>
 
<div class="Title">
 
Creating new kinds of scaffold proteins
 
</div>
 
</div>
 
 
<div class="The_Menu">
 
<ul class="Menu_List">
 
<li><a class="active_The_Menu" href="https://2016.igem.org/Team:TU-Eindhoven">Home</a></li>
 
<li><a href="https://2016.igem.org/Team:TU-Eindhoven/Team/Members">Team</a></li>
 
<li><a href="https://2016.igem.org/Team:TU-Eindhoven/Description">Project</a></li>
 
<li><a href="https://2016.igem.org/Team:TU-Eindhoven/Modeling/Rosetta">Modeling</a></li>
 
<li><a href="https://2016.igem.org/Team:TU-Eindhoven/HP/Silver">Human Practices</a></li>
 
<li><a href="https://2016.igem.org/Team:TU-Eindhoven/Results">Results</a></li>
 
<div class="Facebook">
 
<a target="_blank" href="https://www.facebook.com/iGEMEindhoven2016">
 
<img id="Facebook_Logo" src="https://static.igem.org/mediawiki/2016/b/ba/Team_TU_Eindhoven_Facebook_Icon.png">
 
</a>
 
</div>
 
<div class="iGEM">
 
<a target="_blank" href="https://2016.igem.org/Main_Page">
 
<img id="iGEM_Logo" src="https://static.igem.org/mediawiki/2016/c/ca/TU-Eindhoven_iGEM_Logo_2016.png">
 
</a>
 
</div>
 
</ul>
 
</div>
 
 
 
<div class="Header_Panel">
 
<div class="Header_Panel">
 
<div class="Panel_Image">
 
<div class="Panel_Image">
    <img class="Image" src="https://static.igem.org/mediawiki/2016/2/21/Team_TU_Eindhoven_Round_Future.png">
+
    <img class="Image" src="https://static.igem.org/mediawiki/2016/d/dc/TU-Eindhoven--HomePanel.png">
 
</div>
 
</div>
 
<div class="Panel">
 
<div class="Panel">
 
<div class="Panel_Title">
 
<div class="Panel_Title">
Homepage
+
Small molecule mediated scaffolds
 
</div>
 
</div>
  
Line 86: Line 61:
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
                         <div class="Slide_Header">The Universal Scaffold</div>
+
                         <div class="Slide_Header" id="Project_title">T14-3-3 based scaffold proteins</div>
 
                         <div class="Slide_Row">
 
                         <div class="Slide_Row">
                             <div class="Column_40">
+
                             <div class="Column_50">
                                 <img id="Slideshow_Image_1" src="https://static.igem.org/mediawiki/2016/d/d0/TU_Eindhoven--iGEM_Logo.png">
+
<a href="https://static.igem.org/mediawiki/2016/d/db/T--TU-Eindhoven--Wildtype.png" rel="lightbox">
 +
                                 <img id="Slideshow_Image_1" src="https://static.igem.org/mediawiki/2016/d/db/T--TU-Eindhoven--Wildtype.png">
 +
</a>
 
                             </div>
 
                             </div>
                             <div class="Column_60">
+
                             <div class="Column_50">
 
                                 <p>
 
                                 <p>
                                     In the emerging field of synthetic biology, many new innovations arise. To use them as efficient and safe as possible, regulation is key. Therefore, iGEM TU Eindhoven is developing new kinds of scaffold proteins, based on 14-3-3 proteins.  
+
                                     In the emerging field of synthetic biology, many new innovations arise. To use them as efficient and safe as possible, regulation is key. Therefore, iGEM TU Eindhoven is developing new kinds of scaffold proteins, based on 14-3-3 proteins. These scaffold proteins have a wide range of applications in nature and can be used to regulate systems in synthetic biology.
 
                                 </p>
 
                                 </p>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
                         <div class="clear"></div>
 
                         <div class="clear"></div>
                        <div class="Column">
 
                            <p>
 
                            These scaffold proteins have a wide range of applications in nature and utilizing this feature they are used to regulate systems in synthetic biology.
 
                            </p>
 
                        </div>
 
                        <div class="clear"></div>
 
 
 
                     </li>
 
                     </li>
 
                     <li id="slide2">
 
                     <li id="slide2">
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Description">
+
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Team">
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
                         <div class="Slide_Header">The Team</div>
+
                         <div class="Slide_Header">Team</div>
 
                         <div class="Slide_Row">
 
                         <div class="Slide_Row">
 
                             <div class="Column_50">
 
                             <div class="Column_50">
                                 <img id="Slideshow_Image_2" src="">
+
                <a href="https://static.igem.org/mediawiki/2016/c/c3/T-TU-Eindhoven--Team_Foto.png" rel="lightbox">
 +
                                 <img id="Slideshow_Image_2" src="https://static.igem.org/mediawiki/2016/c/c3/T-TU-Eindhoven--Team_Foto.png">
 +
</a>
 
                             </div>
 
                             </div>
 
                             <div class="Column_50">
 
                             <div class="Column_50">
Line 127: Line 99:
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
                         <div class="Slide_Header">The Model</div>
+
                         <div class="Slide_Header">Model</div>
 
                         <div class="Slide_Row">
 
                         <div class="Slide_Row">
 
                             <div class="Column_50">
 
                             <div class="Column_50">
 +
<a href="https://static.igem.org/mediawiki/2016/0/08/T-TU-Eindhoven--Homepage_Model.png" rel="lightbox">
 
                                 <img id="Slideshow_Image_3" src="https://static.igem.org/mediawiki/2016/0/08/T-TU-Eindhoven--Homepage_Model.png">
 
                                 <img id="Slideshow_Image_3" src="https://static.igem.org/mediawiki/2016/0/08/T-TU-Eindhoven--Homepage_Model.png">
 +
</a>
 
                             </div>
 
                             </div>
 
                             <div class="Column_50">
 
                             <div class="Column_50">
 
                                 <p>
 
                                 <p>
                                     In order to create our heterodimeric scaffold it is essential to find suitable mutations to create a mutated T14-3-3/CT52 pair that is orthogonal to the wildtype. To find these mutations, The Rosetta software and a self-written protocol was used to determine the yet unknown properties of our newly designed pairs, a model based on Mass-Action and Michaelis-Menten kinetics was developed.
+
                                     In order to create new heterodimeric scaffold it is essential to find suitable mutations to create a mutated T14-3-3/CT52 pair that is orthogonal to the wildtype. To find these mutations, The Rosetta software and a self-written protocol was used to determine the yet unknown properties of our newly designed pairs, a model based on Mass-Action and Michaelis-Menten kinetics was developed.
 
                                 </p>  
 
                                 </p>  
 
                             </div>  
 
                             </div>  
Line 141: Line 115:
 
                     </li>
 
                     </li>
 
                     <li id="slide4">
 
                     <li id="slide4">
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/HP/Silver">
+
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Human_Practices">
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
Line 147: Line 121:
 
                         <div class="Slide_Row">
 
                         <div class="Slide_Row">
 
                             <div class="Column_50">
 
                             <div class="Column_50">
                                 <img id="Slideshow_Image_4" src="">
+
                            <a href="https://static.igem.org/mediawiki/2016/6/6e/TUE_HP_frontpage.png" rel="lightbox">
 +
                                 <img id="Slideshow_Image_4" src="https://static.igem.org/mediawiki/2016/6/6e/TUE_HP_frontpage.png">
 +
                            </a>
 
                             </div>
 
                             </div>
 
                             <div class="Column_50">
 
                             <div class="Column_50">
 
                                 <p>
 
                                 <p>
                                     Three application scenarios were made to investigate the societal impact our scaffold protein might have. For this, our outreach to society and more, check out the human practices part of our wiki.
+
                                     Three application scenarios were made to investigate the societal impact our scaffold protein might have. To reach out to community an education package was developed. Furthermore, it was investigated how our project can contribute to safety in synthetic biology.
 
                                 </p>  
 
                                 </p>  
 
                             </div>  
 
                             </div>  
Line 158: Line 134:
 
                     </li>
 
                     </li>
 
                     <li id="slide5">
 
                     <li id="slide5">
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Results">
+
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Results/Introduction">
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
                         <div class="Slide_Header">The Results</div>
+
                         <div class="Slide_Header">Results</div>
 
                         <div class="Slide_Row">
 
                         <div class="Slide_Row">
 
                             <div class="Column_50">
 
                             <div class="Column_50">
Line 168: Line 144:
 
                             <div class="Column_50">
 
                             <div class="Column_50">
 
                                 <p>
 
                                 <p>
                                     The data we acquired in the lab was fit to our model in order to determine the desired properties, showing us how useful our newly designed scaffold is. (WIP). <br> <br> <br> <br> <br> <br><br><br><br>
+
                                     The performance of CT52 fused NanoBiT fragments was analysed by measuring the luminescence at varying concentrations. The data we acquired in the lab by NanoBit assays for our heterodimers was used in order to verify the quality or our mutations. For each newly found mutation set the functionality of the scaffold and the orthogonality with respect to the wildtype were determined.  
 +
Furthermore a caspase-9 assay was performed to test the activity of caspase-9 after increasing its concentration by T14-3-3.  
 +
 
 
                                 </p>  
 
                                 </p>  
 
                             </div>   
 
                             </div>   
Line 183: Line 161:
 
             <div id="Homepage_Video">  
 
             <div id="Homepage_Video">  
 
                 <video width="700px" height="525px" controls>
 
                 <video width="700px" height="525px" controls>
                     <source src="">
+
                     <source src="https://static.igem.org/mediawiki/2016/9/9c/T--TU-Eindhoven--Homepage_Filmpje.mp4">
 
                 </video>
 
                 </video>
 
             </div>
 
             </div>

Latest revision as of 21:23, 19 October 2016

iGEM TU Eindhoven

Small molecule mediated scaffolds
Welcome to the WIKI of the 2016 iGEM team from Eindhoven University of Technology!
  • Read more
    T14-3-3 based scaffold proteins

    In the emerging field of synthetic biology, many new innovations arise. To use them as efficient and safe as possible, regulation is key. Therefore, iGEM TU Eindhoven is developing new kinds of scaffold proteins, based on 14-3-3 proteins. These scaffold proteins have a wide range of applications in nature and can be used to regulate systems in synthetic biology.

  • Read more
    Team

    The iGEM 2016 team of the Eindhoven University of Technology consists of 9 enthusiastic undergraduates of both Biomedical Engineering and Medical Sciences and Technology. Our members work very hard both inside and outside the lab, and have a great time working on our project and learn a lot thanks to iGEM.

  • Read more
    Model

    In order to create new heterodimeric scaffold it is essential to find suitable mutations to create a mutated T14-3-3/CT52 pair that is orthogonal to the wildtype. To find these mutations, The Rosetta software and a self-written protocol was used to determine the yet unknown properties of our newly designed pairs, a model based on Mass-Action and Michaelis-Menten kinetics was developed.

  • Read more
    Human Practices

    Three application scenarios were made to investigate the societal impact our scaffold protein might have. To reach out to community an education package was developed. Furthermore, it was investigated how our project can contribute to safety in synthetic biology.

  • Read more
    Results

    The performance of CT52 fused NanoBiT fragments was analysed by measuring the luminescence at varying concentrations. The data we acquired in the lab by NanoBit assays for our heterodimers was used in order to verify the quality or our mutations. For each newly found mutation set the functionality of the scaffold and the orthogonality with respect to the wildtype were determined. Furthermore a caspase-9 assay was performed to test the activity of caspase-9 after increasing its concentration by T14-3-3.

Paused