Difference between revisions of "Template:Team:TU-Eindhoven Wrap HTML"

 
(4 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
<div class="Panel">
 
<div class="Panel">
 
<div class="Panel_Title">
 
<div class="Panel_Title">
Creating new scaffold proteins
+
Small molecule mediated scaffolds
 
</div>
 
</div>
  
Line 61: Line 61:
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
                         <div class="Slide_Header" id="Project_title">Small molecule mediated scaffolds for synthetic biology </div>
+
                         <div class="Slide_Header" id="Project_title">T14-3-3 based scaffold proteins</div>
 
                         <div class="Slide_Row">
 
                         <div class="Slide_Row">
 
                             <div class="Column_50">
 
                             <div class="Column_50">
Line 108: Line 108:
 
                             <div class="Column_50">
 
                             <div class="Column_50">
 
                                 <p>
 
                                 <p>
                                     In order to create our heterodimeric scaffold it is essential to find suitable mutations to create a mutated T14-3-3/CT52 pair that is orthogonal to the wildtype. To find these mutations, The Rosetta software and a self-written protocol was used to determine the yet unknown properties of our newly designed pairs, a model based on Mass-Action and Michaelis-Menten kinetics was developed.
+
                                     In order to create new heterodimeric scaffold it is essential to find suitable mutations to create a mutated T14-3-3/CT52 pair that is orthogonal to the wildtype. To find these mutations, The Rosetta software and a self-written protocol was used to determine the yet unknown properties of our newly designed pairs, a model based on Mass-Action and Michaelis-Menten kinetics was developed.
 
                                 </p>  
 
                                 </p>  
 
                             </div>  
 
                             </div>  
Line 134: Line 134:
 
                     </li>
 
                     </li>
 
                     <li id="slide5">
 
                     <li id="slide5">
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Results">
+
                         <a class="Button" href="https://2016.igem.org/Team:TU-Eindhoven/Results/Introduction">
 
                             Read more
 
                             Read more
 
                         </a>
 
                         </a>
Line 144: Line 144:
 
                             <div class="Column_50">
 
                             <div class="Column_50">
 
                                 <p>
 
                                 <p>
                                     The data we acquired in the lab was fit to our model in order to determine the desired properties, showing us how useful our newly designed scaffold is.  
+
                                     The performance of CT52 fused NanoBiT fragments was analysed by measuring the luminescence at varying concentrations. The data we acquired in the lab by NanoBit assays for our heterodimers was used in order to verify the quality or our mutations. For each newly found mutation set the functionality of the scaffold and the orthogonality with respect to the wildtype were determined.
 +
Furthermore a caspase-9 assay was performed to test the activity of caspase-9 after increasing its concentration by T14-3-3.  
 +
 
 
                                 </p>  
 
                                 </p>  
 
                             </div>   
 
                             </div>   

Latest revision as of 21:23, 19 October 2016

iGEM TU Eindhoven

Small molecule mediated scaffolds
Welcome to the WIKI of the 2016 iGEM team from Eindhoven University of Technology!
  • Read more
    T14-3-3 based scaffold proteins

    In the emerging field of synthetic biology, many new innovations arise. To use them as efficient and safe as possible, regulation is key. Therefore, iGEM TU Eindhoven is developing new kinds of scaffold proteins, based on 14-3-3 proteins. These scaffold proteins have a wide range of applications in nature and can be used to regulate systems in synthetic biology.

  • Read more
    Team

    The iGEM 2016 team of the Eindhoven University of Technology consists of 9 enthusiastic undergraduates of both Biomedical Engineering and Medical Sciences and Technology. Our members work very hard both inside and outside the lab, and have a great time working on our project and learn a lot thanks to iGEM.

  • Read more
    Model

    In order to create new heterodimeric scaffold it is essential to find suitable mutations to create a mutated T14-3-3/CT52 pair that is orthogonal to the wildtype. To find these mutations, The Rosetta software and a self-written protocol was used to determine the yet unknown properties of our newly designed pairs, a model based on Mass-Action and Michaelis-Menten kinetics was developed.

  • Read more
    Human Practices

    Three application scenarios were made to investigate the societal impact our scaffold protein might have. To reach out to community an education package was developed. Furthermore, it was investigated how our project can contribute to safety in synthetic biology.

  • Read more
    Results

    The performance of CT52 fused NanoBiT fragments was analysed by measuring the luminescence at varying concentrations. The data we acquired in the lab by NanoBit assays for our heterodimers was used in order to verify the quality or our mutations. For each newly found mutation set the functionality of the scaffold and the orthogonality with respect to the wildtype were determined. Furthermore a caspase-9 assay was performed to test the activity of caspase-9 after increasing its concentration by T14-3-3.

Paused