Difference between revisions of "Team:Hannover/Reference"

Line 39: Line 39:
 
           <li><a href="https://2016.igem.org/Team:Hannover/Software#description">Description</a></li>
 
           <li><a href="https://2016.igem.org/Team:Hannover/Software#description">Description</a></li>
 
  <li><a href="https://2016.igem.org/Team:Hannover/Software#phabricator">Phabricator</a></li>
 
  <li><a href="https://2016.igem.org/Team:Hannover/Software#phabricator">Phabricator</a></li>
  <li><a href="https://2016.igem.org/Team:Hannover/Software#modeling">Modeling: Programming a Chip Spotter</a></li>
+
  <li><a href="https://2016.igem.org/Team:Hannover/Software#cyberprinter">CyberPrinter</a></li>
  <li><a href="https://2016.igem.org/Team:Hannover/Software#talsetter">TALsetter</a></li>
+
  <li><a href="https://2016.igem.org/Team:Hannover/Software#talsetter">Modeling: TALsetter</a></li>
 
  <!--li><a href="TODO">Design</a></li-->
 
  <!--li><a href="TODO">Design</a></li-->
 
  <!--li>Modelling</li-->
 
  <!--li>Modelling</li-->

Revision as of 21:50, 19 October 2016

References

  1. Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.
  2. Boch, J.,et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (326), pp. 1509-1512.
  3. Camarero, J. A., Fushman, D., Cowburn, D., and Muir, T. W. (2001). Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.
  4. Evans, T. C., Benner, J., and Xu, M.-Q. (1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.
  5. Geissler, R.,et al. (2011). Transcriptional activators of human genes with programmable DNA-specificity. PLOS one .
  6. iGEM Heidelberg. (2014). The Ring of Fire. Retrieved 10 13, 2016, from https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization
  7. Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7
  8. Iwai, H., Lingel, A., and Plückthun, A. (2001). Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.
  9. Lonzaric, J., et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.
  10. Miller, J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148. Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.
  11. Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia
  12. Qasim, W., et al. (2015). First clinical application of TALEN engineered universal CAR19 T cells in B-ALL. Blood , 126 (23), p. 2046.
  13. Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/
  14. Streubel, J., et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.
  15. Tavassoli, A., and Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.
  16. Wood, D. W., and Camarero, J. A. (2014). Intein applications: from protein purification and labeling to metabolic control methods. The Journal of Biological Chemistry , 289 (21), pp. 14512-14519.
Sponsors

Our project would not have been possible without financial support from multiple sponsors and supporters.
Carl Roth IDT Leibniz University Hannover Leibniz Universitätsgesellschaft e.V. New England Biolabs Promega Sartorius SnapGene