Difference between revisions of "Team:Aix-Marseille/Design"

(General objective)
m (General objective)
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
==General objective==
 
==General objective==
  
Nowadays, platinum ressources are an issue because of their planned disappearance toward 2064. Moreover, any alternative has been found so far to counteract the disparition of this metal compared to its central importance in many industries (electronic, automobile, medicine..) .
+
Nowadays, platinum ressources are an issue because of their planned disappearance toward 2064. Moreover, any alternative has been found so far to counteract the disparition of this metal compared to its central importance in many industries (electronic, automobile, medical..) .
  
 
Facing this problem, our goal here is to make a sustainable process, extracting platinum from an other source (road, sludge) than mines ressources, less pollutant, less expensive..
 
Facing this problem, our goal here is to make a sustainable process, extracting platinum from an other source (road, sludge) than mines ressources, less pollutant, less expensive..
Line 8: Line 8:
 
Accumulation of the metal on the road side has been frequently shown since the beginning of the 21st century. Futhermore, alternatives methods to recycle precious metal are investigated. Here, we use the adsorption potentiel of bacterial natural componants (specifically flagellum and biopeptides) to make a process able to extract or concentrate the platinum available on different compartiments like soil, plants, sewege sludge...  
 
Accumulation of the metal on the road side has been frequently shown since the beginning of the 21st century. Futhermore, alternatives methods to recycle precious metal are investigated. Here, we use the adsorption potentiel of bacterial natural componants (specifically flagellum and biopeptides) to make a process able to extract or concentrate the platinum available on different compartiments like soil, plants, sewege sludge...  
  
[[File:T--Aix-Marseille--maquette2.jpeg|770px|center|thumb|Maquette of our process in the futur : Process has been imagined in a circular platinum economy based on the sludge treatment. Platinum found on the water retention basin is recovered and incinerated. Though, valuable ashes obtained would be treated by both steps we made : the first one is a siderophore treatment making a first concentration of the platinum and other metals, the second one is a flagellin treatment allowing to make industrialisable platinum. In consequence, treated sludge are depolluted from metal and can be spreaded on the crops making an additional valorization. The recycled platinum can be used in automobile industry for example and be an element of new automobiles. And steps finally come a full circle. ]]
+
[[File:T--Aix-Marseille--maquette2.jpeg|770px|center|thumb|Maquette of our process in the futur : Process has been imagined in a circular platinum economy based on the sludge treatment. Platinum found on the water retention basin is recovered and incinerated. Though, valuable ashes obtained would be treated by both steps we made : the first one is a siderophore treatment making a first concentration of the platinum and other metals, the second one is a flagellin treatment allowing to make industrialisable platinum. In consequence, treated sludge are depolluted from metal and can be spreaded on the crops making an additional valorization. The recycled platinum can be used in automobile industry for example and be an element of new automobiles. And then the platinum come back to it first form and can be recycle and the cycle begin, the cycle of platinum!. ]]
  
 
==Source of platinum==
 
==Source of platinum==
Since a law from 1993, platinum is largely used in catalytic converter to avoid toxic gaz release <ref>J. de Aberasturi, et al., Minerals Engineering 24, 505 (2011)</ref>. . During the automobile functioning, the precious metal is rejected and deposed on the road under a ionic form <ref>P.S Hooda & al. 2007, https://www.ncbi.nlm.nih.gov/pubmed/17604084</ref><ref>Liliane Michel Legret & al. http://link.springer.com/article/10.1007/s11368-012-0491-3.</ref> Platinum leaching leads to an accumulation of this metal on the road side. By default, it has been prooved that plants are potential bioaccumulator of platinum, which is found concentrated on the roots, leaves.. Otherwise, the metal is also carried on the sewage sludge and is actually an issue regarding the recycling potential of these sludge.
+
Since a law from 1993, platinum is largely used in catalytic converter to avoid toxic gaz release <ref>J. de Aberasturi, et al., Minerals Engineering 24, 505 (2011)</ref>. . During the automobile functioning, the precious metal is rejected and deposed on the road under a ionic form <ref>P.S Hooda & al. 2007, https://www.ncbi.nlm.nih.gov/pubmed/17604084</ref><ref>Liliane Michel Legret & al. http://link.springer.com/article/10.1007/s11368-012-0491-3.</ref> Platinum leaching leads to an accumulation of this metal on the road side. By default, it has been prooved that plants are potential bioaccumulator of platinum, which is found accumulated on the roots, leaves or into them. Otherwise, the metal is also carried on the sewage sludge and is actually an issue regarding the recycling potential of these sludge.
  
 
[[File:T--Aix-Marseille--platine.jpeg|500px|center|thumb|Platinum sources]]
 
[[File:T--Aix-Marseille--platine.jpeg|500px|center|thumb|Platinum sources]]
Line 55: Line 55:
 
This step aims to :  
 
This step aims to :  
 
* adsorb ions on bacterial flagella protein
 
* adsorb ions on bacterial flagella protein
* the ambient reducer power reduces ions into oxidized nano particles
+
* reduce ions into reduced nanoparticles by the ambient reducer power
 
All together, these findings incite us to use these natural properties to build a biobrick which is a high affinity binder of platinum based on <i>E. coli</i> and <i>Desulfovibrio vulgaris</i> flagellum and synthetic peptides. To this end, we analyze the flagella sequences and structural properties of the external part of the flagella. Then, on the part of the flagellin facing the external medium, an insertion restriction site will be inserted. Then specific precious metal peptides would be added using this insertion site to increase the level of adsorption specificity and yield. In this way, peptide would be facing the external medium and being able to bind metallic ions. To obtain a high transcription level of this sequence, we put transcription control under a strong promoter enabling a high flagellin production.
 
All together, these findings incite us to use these natural properties to build a biobrick which is a high affinity binder of platinum based on <i>E. coli</i> and <i>Desulfovibrio vulgaris</i> flagellum and synthetic peptides. To this end, we analyze the flagella sequences and structural properties of the external part of the flagella. Then, on the part of the flagellin facing the external medium, an insertion restriction site will be inserted. Then specific precious metal peptides would be added using this insertion site to increase the level of adsorption specificity and yield. In this way, peptide would be facing the external medium and being able to bind metallic ions. To obtain a high transcription level of this sequence, we put transcription control under a strong promoter enabling a high flagellin production.
 
[[File:T--Aix-Marseille--flagel_captation.jpeg|500px|center|thumb|Adsorption of the platinum on the flagellin]]
 
[[File:T--Aix-Marseille--flagel_captation.jpeg|500px|center|thumb|Adsorption of the platinum on the flagellin]]
Next, the flagellin produced will be added to the first concentrated platinum solution. Flagellin containing specific peptides will bind the free or available ions in the medium and reduce them into oxydised nanoparticules usable in industry. A simple centrifugation of the flagellin binding the platinum allows to concentrate the metal a second time.
+
Next, the flagellin produced will be added to the first concentrated platinum solution. Flagellin containing specific peptides will bind the free or available ions in the medium and reduce them into reduced nanoparticules usable in industry. A simple centrifugation of the flagellin binding the platinum allows to concentrate the metal a second time.
  
 
<references/>
 
<references/>
  
 
{{:Team:Aix-Marseille/Template-Footer}}
 
{{:Team:Aix-Marseille/Template-Footer}}

Latest revision as of 22:31, 19 October 2016