Difference between revisions of "Team:Hannover/Reference"

 
(3 intermediate revisions by 2 users not shown)
Line 39: Line 39:
 
           <li><a href="https://2016.igem.org/Team:Hannover/Software#description">Description</a></li>
 
           <li><a href="https://2016.igem.org/Team:Hannover/Software#description">Description</a></li>
 
  <li><a href="https://2016.igem.org/Team:Hannover/Software#phabricator">Phabricator</a></li>
 
  <li><a href="https://2016.igem.org/Team:Hannover/Software#phabricator">Phabricator</a></li>
  <li><a href="https://2016.igem.org/Team:Hannover/Software#modeling">Modeling: Programming a Chip Spotter</a></li>
+
  <li><a href="https://2016.igem.org/Team:Hannover/Software#cyberprinter">CyberPrinter</a></li>
  <li><a href="https://2016.igem.org/Team:Hannover/Software#talsetter">TALsetter</a></li>
+
  <li><a href="https://2016.igem.org/Team:Hannover/Software#talsetter">Modeling: TALsetter</a></li>
 
  <!--li><a href="TODO">Design</a></li-->
 
  <!--li><a href="TODO">Design</a></li-->
 
  <!--li>Modelling</li-->
 
  <!--li>Modelling</li-->
Line 60: Line 60:
 
<li id="1">Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.</li>
 
<li id="1">Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.</li>
  
<li id="2">Boch, J. et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
+
<li id="2">Boch, J.,et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (326), pp. 1509-1512.</li>
  
<li id="3">Boch, J. et al. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science (326), pp. 1509-1512.</li>
+
<li id="3">Camarero, J. A., Fushman, D., Cowburn, D., and Muir, T. W. (2001). Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.</li>
  
<li id="4">Camarero, J. A., Fushman, D., Cowburn, D. & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry, pp. 2479-2484.</li>
+
<li id="4">Evans, T. C., Benner, J., and Xu, M.-Q. (1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.</li>
  
<li id="5">Camarero, J. A., Fushman, D., Cowburn, D. & Muir, T. W. (2001). Peptide Chemical Ligation Inside Living Cells: In Vivo Generation of a Circular Protein Domain. Bioorganic & Medicinal Chemistry, pp. 2479-2484.</li>
+
<li id="5">Geissler, R.,et al. (2011). Transcriptional activators of human genes with programmable DNA-specificity. PLOS one .</li>
  
<li id="6">Evans, T. C., Benner, J. & Xu, M.-Q. (1999). The Cyclization and Polymerisation of Bacterially Expressed Proteins Using Modified Self-splicing Inteins. The Journal of Biological Chemistry, 274 (26), pp. 18359-18363.</li>
+
<li id="6">iGEM Heidelberg. (2014). The Ring of Fire. Retrieved 10 13, 2016, from https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization</li>
  
<li id="7">Geissler, R. et al. (2011). Transcriptional Activators of Human Genes with Programmable DNA-Specificity. PLOS one.</li>
+
<li id="7">Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7</li>
  
<li id="8">Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7</li>
+
<li id="8">Iwai, H., Lingel, A., and Plückthun, A. (2001). Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.</li>
  
<li id="9">Iwai, H., Lingel, A. & Plückthun, A. (2001). Cyclic Green Fluorescent Protein Produced in Vivo Using an Artificially Split PI-PfuI Intein from Pyrococcus furiosus. The Journal of Biological Chemistry, 276 (19), pp. 16548-16554.</li>
+
<li id="9">Lonzaric, J., et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.</li>
  
<li id="10">iGEM Team Heidelberg (2014). The Ring of Fire. Retrieved 10 13, 2016, from CIRCULARIZATION - Transforming an enzyme into a ring of fire: https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization</li>
+
<li id="10">Miller, J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148.</li>
  
<li id="11">Lonzaric, J. et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research, 44 (3), pp. 1471-1481.</li>
+
<li>Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.</li>
  
<li id="12">Miller, J. et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29 (2), pp. 143-148.</li>
+
<li id="11">Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia</li>
  
<li id="13">Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.</li>
+
<li id="12">Qasim, W., et al. (2015). First clinical application of TALEN engineered universal CAR19 T cells in B-ALL. Blood , 126 (23), p. 2046.</li>
  
<li id="14">Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia</li>
+
<li id="13">Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/</li>
  
<li id="15">Qasim, W. et al. (2015). First Clinical Application of Talen Engineered Universal CAR19 T Cells in B-ALL. Blood , 126 (23), p. 2046.</li>
+
<li id="14">Streubel, J., et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.</li>
  
<li id="16">Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/</li>
+
<li id="15">Tavassoli, A., and Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.</li>
  
<li id="17">Streubel, J. et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.</li>
+
<li id="16">Wood, D. W., and Camarero, J. A. (2014). Intein applications: from protein purification and labeling to metabolic control methods. The Journal of Biological Chemistry , 289 (21), pp. 14512-14519.</li>
 
+
<li id="18">Tavassoli, A. & Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols, 2 (5), pp. 1126-1133.</li>
+
 
+
<li id="19">Weber, E. et al. (2011). Assembly of Designer TAL Effectors by Golden Gate Cloning. PloS One, 6 (5).</li>
+
 
+
<li id="20">Williams, N. K. (2002). In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein. The Journal of Biological Chemistry, 227 (10), pp. 7790-7798.</li>
+
 
+
<li id="21">Wood, D. W. & Camarero, J. A. (2014). Intein Applications: From Protein Purification and Labeling to Metabolic Control Methods. The Journal of Biological Chemistry, 289 (21), pp. 14512-14519.</li>
+
 
</ol>
 
</ol>
 
</div>
 
</div>

Latest revision as of 22:46, 19 October 2016

References

  1. Boch, J. (2011). TALEs of genome targeting. Nature Biotechnology , 29 (2), pp. 135-136.
  2. Boch, J.,et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science (326), pp. 1509-1512.
  3. Camarero, J. A., Fushman, D., Cowburn, D., and Muir, T. W. (2001). Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorganic & Medicinal Chemistry , pp. 2479-2484.
  4. Evans, T. C., Benner, J., and Xu, M.-Q. (1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. The Journal of Biological Chemistry , 274 (26), pp. 18359-18363.
  5. Geissler, R.,et al. (2011). Transcriptional activators of human genes with programmable DNA-specificity. PLOS one .
  6. iGEM Heidelberg. (2014). The Ring of Fire. Retrieved 10 13, 2016, from https://2014.igem.org/Team:Heidelberg/Toolbox/Circularization
  7. Hirschler, B. (2016, May). Second baby gets Cellectis "designer" cells to clear leukemia. Retrieved 10 13, 2016, from Reuters: http://www.reuters.com/article/us-health-celltherapy-idUSKCN0XX1F7
  8. Iwai, H., Lingel, A., and Plückthun, A. (2001). Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. The Journal of Biological Chemistry , 276 (19), pp. 16548-16554.
  9. Lonzaric, J., et al. (2016). Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Research , 44 (3), pp. 1471-1481.
  10. Miller, J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology , 29 (2), pp. 143-148.
  11. Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. (72), pp. 249-289.
  12. Office, G.-I. P. (2015, September). World first use of gene-edited immune cells to treat ‘incurable’ leukemia. Retrieved 10 13, 2016, from Great Ormond Street Hospital for Children: http://www.gosh.nhs.uk/news/press-releases/2015-press-release-archive/world-first-use-gene-edited-immune-cells-treat-incurable-leukaemia
  13. Qasim, W., et al. (2015). First clinical application of TALEN engineered universal CAR19 T cells in B-ALL. Blood , 126 (23), p. 2046.
  14. Specter, M. (2016, August). How the DNA Revolution Is Changing Us. Retrieved 10 13, 2016, from National Geographic: http://www.nationalgeographic.com/magazine/2016/08/dna-crispr-gene-editing-science-ethics/
  15. Streubel, J., et al. (2013). TALEs - Proteine mit programmierbarer DNA-Bindespezifität. BIOspektrum , 2013 (4), pp. 370-373.
  16. Tavassoli, A., and Benkovic, S. J. (2007). Split-intein mediated circular ligation use in the synthesis of cyclic peptide libraries in E. coli. Nature Protocols , 2 (5), pp. 1126-1133.
  17. Wood, D. W., and Camarero, J. A. (2014). Intein applications: from protein purification and labeling to metabolic control methods. The Journal of Biological Chemistry , 289 (21), pp. 14512-14519.
Sponsors

Our project would not have been possible without financial support from multiple sponsors and supporters.
Carl Roth IDT Leibniz University Hannover Leibniz Universitätsgesellschaft e.V. New England Biolabs Promega Sartorius SnapGene