Line 169: | Line 169: | ||
<body> | <body> | ||
<div tabindex="-1" id="" class="border-box-sizing"> | <div tabindex="-1" id="" class="border-box-sizing"> | ||
− | <div class="container" id="-container"> | + | <div class="container-fluid" id="-container"> |
<div class="cell border-box-sizing code_cell rendered"> | <div class="cell border-box-sizing code_cell rendered"> |
Revision as of 23:25, 19 October 2016
In [1]:
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
In [2]:
from monomers import *
In [3]:
def init_monomers(n_cells, n_proteins, n_cell_binding = 30, n_protein_binding = 4):
Cell.n_cells=0
cells=[]
for i in range(n_cells):
cells.append(Cell(n_cell_binding))
.n_proteins=0
=[]
for i in range(n_proteins):
.append((n_protein_binding))
return cells,
In [4]:
def polymerize(cells, ):
free_cell_bindings = []
for c in cells:
free_cell_bindings += c.free_bindings
free_protein_bindings = []
for p in :
free_protein_bindings += p.free_bindings
while len(free_protein_bindings)>0 and len(free_cell_bindings)>0:
p_binding_idx = np.random.randint(len(free_protein_bindings))
p_binding = free_protein_bindings.pop(p_binding_idx)
c_binding_idx = np.random.randint(len(free_cell_bindings))
c_binding = free_cell_bindings.pop(c_binding_idx)
#print c_binding.parent.id, p_binding.parent.id
p_binding.bind(c_binding)
return len(free_protein_bindings) , len(free_cell_bindings)
In [49]:
def polymerize_spacial(cells, , n_protein_binding, concentration=0.01, reactivity=0.2, mobility=0.05, max_time=10.):
time = 0.
position_variance = 1.
distance_binding_probability = lambda x: np.exp(-x ** 2 / position_variance ** 2) / (
2 * np.pi * position_variance ** 2)
free_protein_bindings = []
for p in :
free_protein_bindings += p.free_bindings
while (time < max_time):
for i in range(int(np.ceil(reactivity * len(free_protein_bindings)))):
# choose a random PBS
p_binding_idx = np.random.randint(len(free_protein_bindings))
p_binding = free_protein_bindings[p_binding_idx]
# do tests on parent
p = p_binding.parent
# position: the liwer to concentration, the higher the distance
p_pos = float(p.id) / (len() * concentration)
# (float) idx of nearest cell
c_id_mean = p_pos * len(cells) * concentration
# max distance of reachable cells from nearest cell
max_range = position_variance * 3.2
c_id_range = max_range * len(cells) * concentration
c_id_min = max(int(c_id_mean - c_id_range), 0)
c_id_max = min(int(c_id_mean + c_id_range), len(cells))
candidate_cells = cells[c_id_min:c_id_max]
# each has a probability according to the distance
if len(candidate_cells) == 0:
continue
min_distance = max(p_pos - position_variance * 3.2, 0) - p_pos
max_distance = min(-p_pos + position_variance * 3.2,
len() - 1 / len() / concentration) + p_pos
probabilities = np.arange(min_distance, max_distance,
(max_distance - min_distance) / len(candidate_cells))[:len(candidate_cells)]
probabilities = distance_binding_probability(probabilities)
probabilities /= sum(probabilities)
# pick one
cell = np.random.choice(candidate_cells, p=probabilities)
try:
cell.free_bindings.next()
except StopIteration:
# no free bindings left in this cell
continue
# let react with probability respective to free bindings
protein_partners = list(set([b.partner.parent for b in p.bindings if b.partner is not None]))
if len(protein_partners) == 1:
# if a is already attatched to a cell it will most likely not bind to other cells
if cell not in protein_partners and np.random.rand()<0.9:
continue
if len(protein_partners)>1 and cell not in protein_partners:
# if a was binding to two cells already, it will not bind to any other
continue
# if np.random.rand() < float(4 - len(list(p.free_bindings))) / 3.:
# # can only bind to cells it's already bound to
# if cell not in [b.partner.parent for b in p.bindings if b.partner is not None]:
# continue
cell.free_bindings.next().bind(p_binding)
free_protein_bindings.pop(p_binding_idx)
position_variance += mobility
time += 0.01
free_cell_bindings = []
for c in cells:
free_cell_bindings += c.free_bindings
return len(free_protein_bindings), len(free_cell_bindings)
In [89]:
draw = True
In [ ]:
_,_,_=random_graph(cell_graph, 30, 120, n_cell_binding=400, n_protein_binding=4, concentration=0.02, reactivity=0.1, mobility=0.05, max_time=5.0)
In [ ]:
Analysis¶
In [ ]:
draw = False
In [11]:
from graph_tool.all import *
from graph_tool import clustering,stats
In [16]:
def cell_graph(cells,,draw=False):
'''vertices are cells, cells connected via a are connected in the graph with an edge'''
g = Graph(directed=False)
vertices = list(g.add_vertex(len(cells)))
for c_id in range(len(cells)):
for c_b in cells[c_id].bindings:
try:
for p_b in c_b.partner.parent.bindings:
try:
c2_id = p_b.partner.parent.id
if not c_id==c2_id:
g.add_edge(vertices[c_id],vertices[c2_id])
except AttributeError:
pass
except AttributeError:
pass
if draw:
graph_draw(g, vertex_text=g.vertex_index, edge_pen_width=2 , vertex_font_size=30, output="/tmp/graph.png",
output_size=(2000, 2000))
return g
#graph_draw(g, vertex_text=g.vertex_index, vertex_font_size=18, output="/tmp/graph.png",
# output_size=(2000, 2000))
In [29]:
def random_graph(graph_method, n_cells, n_proteins, n_cell_binding = 30, n_protein_binding = 4,concentration=0.02,reactivity=0.01,mobility=0.1,max_time=2.):
# cells,=init_monomers(n_cells, n_proteins, n_cell_binding, n_protein_binding)
# polymerize(cells,)
cells,=init_monomers(n_cells, n_proteins, n_cell_binding = 30, n_protein_binding = 4)
polymerize_spacial(cells, , n_protein_binding=n_protein_binding, concentration=concentration, reactivity=reactivity, mobility=mobility, max_time=max_time)
return graph_method(cells,,draw),cells,
In [83]:
results=[]
draw=False
for n_proteins in np.arange(-1.5,1.5,0.1):
n_proteins = int(len(cells)*10**n_proteins)
g,cells, = random_graph(cell_graph, 30, n_proteins, n_cell_binding=400, n_protein_binding=4, concentration=0.02, reactivity=0.1, mobility=0.05, max_time=5.0)
global_clustering = clustering.global_clustering(g)[0]
tmp=graph_tool.topology.max_cardinality_matching(g)
n_max_matching = tmp.count(tmp)
max_shortest_path = graph_tool.topology.pseudo_diameter(g)[0]
tmp=graph_tool.topology.label_largest_component(g)
biggest_cluster = tmp.get_array().shape[0]
tmp = graph_tool.topology.label_components(g)[1]
tmp = np.sort(tmp)[::-1]
n_clusters = len(tmp)
biggest_cluster = tmp[0]
mean_cluster = np.mean(tmp)
n_free_protein_bindings = 0
n_free_proteins = 0
for p in :
p_free = len(list(p.free_bindings))
n_free_protein_bindings += p_free
if p_free == len(p.bindings):
n_free_proteins += 1
n_free_cell_bindings = 0
n_free_cells = 0
for c in cells:
c_free = len(list(c.free_bindings))
n_free_cell_bindings += c_free
if c_free == len(c.bindings):
n_free_cells += 1
print n_proteins, n_free_cells, n_free_cell_bindings, n_free_proteins, n_free_protein_bindings, n_clusters, mean_cluster, biggest_cluster, global_clustering, max_shortest_path#, n_max_matching, biggest_cluster
results.append([n_proteins, n_free_cells, n_free_cell_bindings, n_free_proteins, n_free_protein_bindings, n_clusters, mean_cluster, biggest_cluster, global_clustering, max_shortest_path])
In [84]:
tmp_res=results
In [85]:
results=np.asarray(results).T
n_proteins=results[0]
In [86]:
results=results[1:]
In [ ]:
titles=["n_free_cells", "n_free_cell_bindings", "n_free_proteins", "n_free_protein_bindings", "n_clusters", "mean_cluster", "biggest_cluster", "global_clustering", "max_shortest_path"]
f, axes = plt.subplots(len(titles)/2+1,2, figsize=(16,8*(len(titles)/2+1)))
for i,result in enumerate(results):
ax = axes[i/2,i%2]
ax.set_title(titles[i])
ax.plot(n_proteins,result.T,"-x")
ax.set_xscale("log")
In [26]:
clustering.global_clustering(g)
Out[26]:
In [37]:
stats.distance_histogram(g)
Out[37]:
In [46]:
tmp=graph_tool.topology.max_cardinality_matching(g)
tmp.count(tmp)
Out[46]:
In [48]:
graph_tool.topology.max_independent_vertex_set(g)
Out[48]:
In [49]:
graph_tool.topology.pseudo_diameter(g)
Out[49]:
In [54]:
tmp=graph_tool.topology.label_largest_component(g)
tmp.get_array().shape[0]
Out[54]:
Cells and bindings vertices¶
In [ ]:
g = Graph(directed=False)
v_size = g.new_vertex_property("int",val=20)
v_group = g.new_vertex_property("int32_t")
#v_color = vprop_vint = g.new_vertex_property("<int>", vals=[])
#cell_vertices = list(g.add_vertex(n_cells))
for cell in cells:
cell.vertex = g.add_vertex()
v_size[cell.vertex] = 100
for p in :
last_vertex = None
for b in p.bindings:
b.vertex=g.add_vertex()
v_size[b.vertex] = 10
v_group[cell.vertex] = p.id
#intraprotein connections
if last_vertex is not None:
g.add_edge(b.vertex,last_vertex)
last_vertex=b.vertex
#cell connections
if b.partner is not None:
cell_vertex = b.partner.parent.vertex
g.add_edge(b.vertex,cell_vertex)
pos=sfdp_layout(g,groups=v_group)
#graph_draw(g, vertex_text=g.vertex_index, vertex_font_size=18, output="/tmp/graph.png",
# output_size=(2000, 2000))
graph_draw(g, pos=pos,edge_pen_width=2, vertex_text=g.vertex_index, vertex_size=v_size, vertex_font_size=0, output_size=(2000, 2000))
#graphviz_draw(g, elen=100, vsize=v_size, size=(2000, 2000))
vertices and cell vertices¶
In [48]:
def pc_graph(cells, , draw=False):
g = Graph(directed=False)
v_size = g.new_vertex_property("int")
#v_group = g.new_vertex_property("i'nt32_t")
#v_color = vprop_vint = g.new_vertex_property("<int>", vals=[])
for cell in cells:
cell.vertex = g.add_vertex()
v_size[cell.vertex] = 120
for p in :
p.vertex=g.add_vertex()
v_size[p.vertex] = 40
for b in p.bindings:
#cell connections
if b.partner is not None:
cell_vertex = b.partner.parent.vertex
if g.edge(p.vertex,cell_vertex) is None: #only one connection per pair
g.add_edge(p.vertex,cell_vertex)
pos=fruchterman_reingold_layout(g)
#graph_draw(g, vertex_text=g.vertex_index, vertex_font_size=18, output="/tmp/graph.png",
# output_size=(2000, 2000))
if draw:
graph_draw(g, edge_pen_width=2, vertex_text=g.vertex_index, vertex_size=v_size, vertex_font_size=15, output_size=(2000, 2000))
return g
In [18]:
g.vertex_index[vertices[1]]
Out[18]:
In [29]:
cells[23].bindings[5].partner.parent.bindings[0].partner.parent
Out[29]:
In [ ]: