Difference between revisions of "Team:Tokyo Tech/Modeling Details"

 
(59 intermediate revisions by 5 users not shown)
Line 8: Line 8:
 
body{
 
body{
 
     background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
 
     background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
    background-attamchment: fixed;
 
 
     background-repeat: no-repeat;
 
     background-repeat: no-repeat;
 
     background-position: center center;
 
     background-position: center center;
 
     background-size: cover;
 
     background-size: cover;
 +
    background-attachment: fixed;
 
}
 
}
 
#globalWrapper, #content{
 
#globalWrapper, #content{
Line 17: Line 17:
 
}
 
}
 
#content{
 
#content{
    background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
+
//    background-image: url("https://static.igem.org/mediawiki/2016/8/83/Tokyo_Tech_Background.png");
    background-attamchment: fixed;
+
    background-repeat: no-repeat;
+
    background-position: center center;
+
    background-size: cover;
+
 
}
 
}
 
/**********************************************************************/
 
/**********************************************************************/
Line 58: Line 54:
 
padding-bottom: 10px;
 
padding-bottom: 10px;
 
}
 
}
#main_contents p.normal_text{
+
#main_contents .normal_text{
 
font-size: 18px;
 
font-size: 18px;
 
text-indent: 18px;
 
text-indent: 18px;
Line 78: Line 74:
 
-webkit-transiton: all 0.6s ease;
 
-webkit-transiton: all 0.6s ease;
 
transition: all 0.6s ease;
 
transition: all 0.6s ease;
 +
}
 +
/************************** this page setting ***************************/
 +
#modeling_detail_wrapper{
 +
font-size: 8px;
 +
margin: 0;
 +
}
 +
#modeling_detail_wrapper table{
 +
font-size: 8px;
 +
}
 +
 +
#modeling_detail_expressions{
 +
width: 45%;
 +
margin-right: auto;
 +
float: left;
 +
}
 +
#modeling_detail_parameters{
 +
width: 45%;
 +
margin-left: auto;
 +
float: left;
 +
}
 +
 +
#main_contents p.caption{
 +
font-size: 16px;
 
}
 
}
  
Line 93: Line 112:
 
<div id="main_contents">
 
<div id="main_contents">
 
<div id="page_header" class="container container_top">
 
<div id="page_header" class="container container_top">
<h1 align="center">Model Development</h1>
+
<h1 align="center">Detailed description</h1>
<div id="page_header_contents" class="container_contents">
+
</div><!-- page_header -->
 +
<div id="modeling_development" class="container">
 +
<div id="modeling_development_header" class="container_header">
 +
<h2><span>Model development</span></h2>
 +
</div><!-- /modeling_development_header -->
 +
<div id="modeling_development_contents" class="container_contents">
 
<p class="normal_text">To simulate the cell-cell communication system, we developed an ordinary differential equation model.
 
<p class="normal_text">To simulate the cell-cell communication system, we developed an ordinary differential equation model.
The following sentences describe how the equations were developed.
+
The following segments describe in detail how the equations were developed with the <span style ="font-style : italic">mazEF</span> system.
And in this page we expound not only on the model with the Maz system, which we selected as the best TA system for our project, but also on the one with the Yaf system, which we chose as an alternative.</p>
+
</p>
</div><!-- /page_header_contents -->
+
</div><!-- modeling_development_contents -->
</div><!-- /page_header -->
+
<div id="modeling_maz_system" class="container">
+
<div id="modeling_maz_header" class="container_header">
+
<h2><span>1. Maz System</span></h1>
+
</div><!-- /modeling_maz_header -->
+
 
<div id="modeling_maz_contents" class="container_contents">
 
<div id="modeling_maz_contents" class="container_contents">
 +
<div style="text-align: center;">
 
<a href="https://static.igem.org/mediawiki/2016/5/52/T--Tokyo_Tech--Model_Details_1.png"><img src="https://static.igem.org/mediawiki/2016/5/52/T--Tokyo_Tech--Model_Details_1.png" /></a>
 
<a href="https://static.igem.org/mediawiki/2016/5/52/T--Tokyo_Tech--Model_Details_1.png"><img src="https://static.igem.org/mediawiki/2016/5/52/T--Tokyo_Tech--Model_Details_1.png" /></a>
<p class="caption"><span style="font-weight: bold;">Fig. 4-2-1. </span> Maz System Gene Circuit</p>
+
<p class="caption"><span style="font-weight: bold;">Fig.5-5-1. The <span style ="font-style : italic">mazEF</span> system gene circuit</span></p></div>
 
<div id="modeling_detail" class="off">
 
<div id="modeling_detail" class="off">
 
<div id="modeling_detail_wrapper">
 
<div id="modeling_detail_wrapper">
 
<div id="modeling_detail_expressions">
 
<div id="modeling_detail_expressions">
<h2>Differencial Equations</h2>
+
<h2>Differencial equations</h2>
 
<h3>Snow White</h3>
 
<h3>Snow White</h3>
 
\begin{equation}
 
\begin{equation}
Line 116: Line 136:
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF]
+
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
Line 128: Line 148:
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
+
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
\end{equation}
 
\end{equation}
Line 135: Line 155:
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF]
+
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]
+
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 
\end{equation}
 
\end{equation}
Line 160: Line 180:
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[mRNA_{LasI}]}{dt} =  leak_{P_{rhl}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
+
\frac{d[mRNA_{LasI}]}{dt} =  leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
 
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF]
 
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF]
 
\end{equation}
 
\end{equation}
Line 173: Line 193:
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
+
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
\end{equation}
 
\end{equation}
Line 180: Line 200:
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF]
+
\frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]
+
\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
 
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]
 
\end{equation}
 
\end{equation}
Line 202: Line 222:
 
<h3>Prince</h3>
 
<h3>Prince</h3>
 
\begin{equation}
 
\begin{equation}
\frac{d[mRNA_{AmiE}]}{dt} = leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^n}{K_{mLux}^n + [C12]^n} - d[mRNA_{AmiE}]
+
\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{AmiE}]
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
Line 212: Line 232:
 
</div><!-- /modeling_detail_expressions -->
 
</div><!-- /modeling_detail_expressions -->
 
<div id="modeling_detail_parameter">
 
<div id="modeling_detail_parameter">
<h2>Explanation about Parameters</h2>
+
<h2>Explanation about parameters</h2>
 
<table border="1" style="margin: auto;">
 
<table border="1" style="margin: auto;">
 
<tbody>
 
<tbody>
Line 219: Line 239:
 
<tr><td>$$P_{max}$$ </td><td> Carrying capacity </td></tr>
 
<tr><td>$$P_{max}$$ </td><td> Carrying capacity </td></tr>
 
<tr><td>$$E_{DiMazF}$$ </td><td> Effect of MazF dimer on growth rate</td></tr>
 
<tr><td>$$E_{DiMazF}$$ </td><td> Effect of MazF dimer on growth rate</td></tr>
<tr><td>$$k$$ </td><td> Transcription rate of mRNA under \(P_{tet}\) </td></tr>
+
<tr><td>$$k$$ </td><td> Transcription rate of downstream of Pcon </td></tr>
<tr><td>$$leak_{P_{lux}}$$ </td><td> Leakage of \(P_{lux}\) </td></tr>
+
<tr><td>$$leak_{Plux}$$ </td><td> Leakage of Plux </td></tr>
<tr><td>$$leak_{P_{rhl}}$$ </td><td> Leakage of \(P_{rhl}\) </td></tr>
+
<tr><td>$$leak_{Prhl}$$ </td><td> Leakage of Prhl </td></tr>
<tr><td>$$\kappa_{Lux}$$ </td><td> Maximum transcription rate of mRNA under \(P_{lux}\)</td></tr>
+
<tr><td>$$\kappa_{Lux}$$ </td><td> Maximum transcription rate of mRNA under Plux</td></tr>
<tr><td>$$\kappa_{Rhl}$$ </td><td> Maximum transcription rate of mRNA under \(P_{rhl}\) </td></tr>
+
<tr><td>$$\kappa_{Rhl}$$ </td><td> Maximum transcription rate of downstream of Prhl </td></tr>
<tr><td>$$n_{Lux}$$ </td><td> Hill coefficient for \(P_{lux}\)</td></tr>
+
<tr><td>$$n_{Lux}$$ </td><td> Hill coefficient for Plux</td></tr>
<tr><td>$$n_{Rhl}$$ </td><td> Hill coefficient for \(P_{rhl}\)</td></tr>
+
<tr><td>$$n_{Rhl}$$ </td><td> Hill coefficient for Prhl</td></tr>
 
<tr><td>$$K_{mLux}$$ </td><td> Lumped paremeter for the Lux System</td></tr>
 
<tr><td>$$K_{mLux}$$ </td><td> Lumped paremeter for the Lux System</td></tr>
 
<tr><td>$$K_{mRhl}$$ </td><td> Lumped paremeter for the Rhl System</td></tr>
 
<tr><td>$$K_{mRhl}$$ </td><td> Lumped paremeter for the Rhl System</td></tr>
Line 237: Line 257:
 
<tr><td>$$f_{mRNA_{MazE}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazE}\) </td></tr>
 
<tr><td>$$f_{mRNA_{MazE}}$$ </td><td> The number of ACA sequences in \(mRNA_{MazE}\) </td></tr>
 
<tr><td>$$\alpha$$ </td><td> Translation rate of Protein </td></tr>
 
<tr><td>$$\alpha$$ </td><td> Translation rate of Protein </td></tr>
<tr><td>$$k_{Di_{MazF}}$$ </td><td> Formation rate of MazF dimer </td></tr>
+
<tr><td>$$k_{DiMazF}$$ </td><td> Formation rate of MazF dimer </td></tr>
  
<tr><td>$$k_{-Di_{MazF}}$$ </td><td> Dissociation rate of MazF dimer </td></tr>
+
<tr><td>$$k_{-DiMazF}$$ </td><td> Dissociation rate of MazF dimer </td></tr>
<tr><td>$$k_{Di_{MazE}}$$ </td><td> Formation rate of MazE dimer </td></tr>
+
<tr><td>$$k_{DiMazE}$$ </td><td> Formation rate of MazE dimer </td></tr>
<tr><td>$$k_{-Di_{MazE}}$$ </td><td> Dissociation rate of MazE dimer </td></tr>
+
<tr><td>$$k_{-DiMazE}$$ </td><td> Dissociation rate of MazE dimer </td></tr>
 
<tr><td>$$k_{Hexa}$$ </td><td> Formation rate of Maz hexamer </td></tr>
 
<tr><td>$$k_{Hexa}$$ </td><td> Formation rate of Maz hexamer </td></tr>
 
<tr><td>$$k_{-Hexa}$$ </td><td> Dissociation rate of Maz hexamer</td></tr>
 
<tr><td>$$k_{-Hexa}$$ </td><td> Dissociation rate of Maz hexamer</td></tr>
Line 268: Line 288:
 
<p class="normal_text" style="text-align:center;"><a href="javascript:void(0);" onClick="show('modeling_detail');" class="showHidden">Expressions</a></p>
 
<p class="normal_text" style="text-align:center;"><a href="javascript:void(0);" onClick="show('modeling_detail');" class="showHidden">Expressions</a></p>
 
<ul id="modeling_maz_list" class="non_dotted_list">
 
<ul id="modeling_maz_list" class="non_dotted_list">
<li><h2>1.1. Cell Population</h2>
+
<li><h2>1. Cell population</h2>
<p>$$ \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} $$ <br /> $$  \tag{4-2-1-1} $$</p>
+
<p>$$ \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} $$ <br /> $$  \tag{1-1} $$</p>
<p>$$  
+
<p>$$
\frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}$$ <br /> $$ \tag{4-2-1-2} $$</p>
+
\frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}$$ <br /> $$ \tag{1-2} $$</p>
<p>$$  
+
<p>$$
\frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \tag{4-2-1-3} $$ </p>
+
\frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \tag{1-3} $$ </p>
<p class="normal_text">The equations above describe how cells grow in the culture.
+
<p class="caption"><span style="font-weight: bold;">Eq.1. </span> Differential equation of cell population</p>
Equations (4-2-1-1), (4-2-1-2) and (4-2-1-3) describe the populations of Snow White, the Queen and the Prince. (4-2-1-3) is described by the logistic growth equation, but (4-2-1-1) and (4-2-1-2) are represented by the growth inhibition by MazF dimers.
+
<p class="normal_text">The equations above describe how each cell grows in the culture.
This factor is designed so that its value is small when the concentration of MazF dimers is low, and its value converges to 1 when the concentration of MazF dimers is high.</p>
+
Equations (1-1), (1-2) and (1-3) describe the populations of Snow White <span style ="font-style : italic">coli</span>, the Queen <span style ="font-style : italic">coli</span> and the Prince <span style ="font-style : italic">coli</span>. (1-3) is described by the logistic growth equation, but (1-1) and (1-2) are represented by the growth inhibition by MazF dimers.
 +
This factor is designed so that its value is small when the concentration of MazF dimers is high, and its value converges to 1 when the concentration of MazF dimers is low.</p>
 
</li><!-- /1.1. Cell Population -->
 
</li><!-- /1.1. Cell Population -->
<li><h2>1.2. Maz System</h2>
+
<li><h2>2. The <span style ="font-style : italic">mazEF</span> system</h2>
 
<ul id="modeling_maz_system" class="non_dotted_list">
 
<ul id="modeling_maz_system" class="non_dotted_list">
<li><h3>1.2.1. Expression of Maz System</h3>
+
<li><h3>2.1. Expression of the <span style ="font-style : italic">mazEF</span> system</h3>
<p class="normal_text">After translation, MazE and MazF each form an stable dimer which can be activated to exert its function.</p>
+
<p class="normal_text">After translation, MazE and MazF each form a dimer which can be activated to exert its function.<div style="text-align: center;"></p>
<a href="https://static.igem.org/mediawiki/2016/8/88/T--Tokyo_Tech--Model_Details_2.png"><img src="https://static.igem.org/mediawiki/2016/8/88/T--Tokyo_Tech--Model_Details_2.png" /></a><br />
+
<a href="https://static.igem.org/mediawiki/2016/8/88/T--Tokyo_Tech--Model_Details_2.png"><img src="https://static.igem.org/mediawiki/2016/8/88/T--Tokyo_Tech--Model_Details_2.png"  style="width: 600px;"/></a><br />
<a href="https://static.igem.org/mediawiki/2016/c/c3/T--Tokyo_Tech--Model_Details_3.png"><img src="https://static.igem.org/mediawiki/2016/c/c3/T--Tokyo_Tech--Model_Details_3.png" /></a>
+
<a href="https://static.igem.org/mediawiki/2016/c/c3/T--Tokyo_Tech--Model_Details_3.png"><img src="https://static.igem.org/mediawiki/2016/c/c3/T--Tokyo_Tech--Model_Details_3.png"  style="width: 600px;"/></a>
<p class="normal_text">Two MazE dimers sandwich the MazF dimer, forming MazF2-MazE2-MazF2 heterohexamers and suppressing the toxicity of the MazF dimers.</p>
+
<p class="normal_text">Two MazF dimers sandwich a MazE dimer, forming MazF2-MazE2-MazF2 heterohexamers and suppressing the toxicity of the MazF dimers.</p>
<a href="https://static.igem.org/mediawiki/2016/e/ea/T--Tokyo_Tech--Model_Details_4.png"><img src="https://static.igem.org/mediawiki/2016/e/ea/T--Tokyo_Tech--Model_Details_4.png" /></a>
+
<a href="https://static.igem.org/mediawiki/2016/e/ea/T--Tokyo_Tech--Model_Details_4.png"><img src="https://static.igem.org/mediawiki/2016/e/ea/T--Tokyo_Tech--Model_Details_4.png"  style="width: 700px;"/></a>
<a href="https://static.igem.org/mediawiki/2016/3/32/T--Tokyo_Tech--Model_Details_5.png"><img src="https://static.igem.org/mediawiki/2016/3/32/T--Tokyo_Tech--Model_Details_5.png" style="width: 500px;" /></a>
+
<a href="https://static.igem.org/mediawiki/2016/3/32/T--Tokyo_Tech--Model_Details_5.png"><img src="https://static.igem.org/mediawiki/2016/3/32/T--Tokyo_Tech--Model_Details_5.png" style="width: 800px;" /></a>
<p class="caption"><span style="font-weight: bold">Fig. 4-2-2. </span> Reaction of Maz System</p>
+
<p class="caption"><span style="font-weight: bold">Fig.5-5-2. Reaction of the <span style ="font-style : italic">mazEF</span> system</span></p></div>
<p class="normal_text">The mRNAs of Snow White and the Queen decrease by their original degradation and by the cleavage at ACA sequences by MazF dimers.</p>
+
<p class="normal_text">The mRNAs of Snow White <span style ="font-style : italic">coli</span> and the Queen <span style ="font-style : italic">coli</span> decrease because of their original degradation and the cleavage at ACA sequences by MazF dimers.<br>Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
<p class="normal_text">Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
+
 
<h3>Snow White</h3>
 
<h3>Snow White</h3>
 +
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 +
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$<br />$$ \tag{2-1} $$</p>
 +
<p>$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$ <br />
 +
$$\tag{2-2}$$</p>
 +
<p>$$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
 +
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br />$$ \tag{2-3} $$</p>
 +
<p>$$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$ <br />$$ \tag{2-4} $$</p>
 +
<p>$$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
 +
<br />$$\tag{2-5}$$</p>
 
<p>$$
 
<p>$$
\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
+
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$<br />$$ \tag{4-2-2-1} $$</p>
+
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$ <br />$$\tag{2-6} $$</p>
<p>$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF] $$ <br />
+
<p>$$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$ <br />$$ \tag{2-7}$$</p>
$$\tag{4-2-2-2}$$</p>
+
<p>$$ \frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
+
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br />$$ \tag{4-2-2-3} $$</p>
+
<p>$$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$ <br />$$ \tag{4-2-2-4} $$</p>
+
<p>$$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]$$
+
<br />$$\tag{4-2-2-5}$$</p>
+
<p>$$
+
\frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
+
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$ <br />$$\tag{4-2-2-6} $$</p>
+
<p>$$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$ <br />$$ \tag{4-2-2-7}$$</p>
+
 
<h3>Queen</h3>
 
<h3>Queen</h3>
 
<p>$$
 
<p>$$
\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
+
\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$<br />$$ \tag{4-2-2-8} $$</p>
+
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$<br />$$ \tag{2-8} $$</p>
<p>$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{Di_{MazF}}[MazF] + 2k_{-Di_{MazF}}[DiMazF] - d_{MazF}[MazF] $$ <br />
+
<p>$$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$ <br />
$$\tag{4-2-2-9}$$</p>
+
$$\tag{2-9}$$</p>
<p>$$ \frac{d[DiMazF]}{dt} = k_{Di_{MazF}}[MazF] - k_{-Di_{MazF}}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
+
<p>$$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br />$$ \tag{4-2-2-10} $$</p>
+
       + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$<br />$$ \tag{2-10} $$</p>
<p>$$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$ <br />$$ \tag{4-2-2-11} $$</p>
+
<p>$$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$ <br />$$ \tag{2-11} $$</p>
<p>$$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{Di_{MazE}}[MazE] + 2k_{-Di_{MazE}}[DiMazE] - d_{MazE}[MazE]$$
+
<p>$$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
<br />$$\tag{4-2-2-12}$$</p>
+
<br />$$\tag{2-12}$$</p>
 
<p>$$
 
<p>$$
\frac{d[DiMazE]}{dt} = k_{Di_{MazE}}[MazE] - k_{-Di_{MazE}}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
+
\frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$ <br />$$\tag{4-2-2-13} $$</p>
+
       + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$ <br />$$\tag{2-13} $$</p>
<p>$$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$ <br />$$ \tag{4-2-2-14}$$</p>
+
<p>$$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$ <br />$$ \tag{2-14}$$</p>
<p class="caption"><span style="font-weight: bold">Eq. 4-2-2. </span>Differential Equations of Maz System</p>
+
<p class="caption"><span style="font-weight: bold">Eq. 2. </span>Differential equations of the <span style ="font-style : italic">mazEF</span> system</p>
<p class="normal_text">Equations (4-2-2-1) and (4-2-2-8) describe the concentration of mRNAs under the AHL inducing promoters.
+
<p class="normal_text">Equations (2-1) and (2-8) describe the concentration of mRNAs under AHL-inducible promoters. Thus, they comprise terms of production by leaky expression of promoters, terms of production by Hill function dependent on the concentration of C4HSL (C4) and 3OC12HSL (C12), terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.<br>
Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
+
Since equations (2-2), (2-3), (2-5), (2-6), (2-7), (2-9), (2-10), (2-12), (2-13) and (2-14) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding and dissociation.</p>
Since Equations (4-2-2-2), (4-2-2-3), (4-2-2-5), (4-2-2-6), (4-2-2-7), (4-2-2-9), (4-2-2-10), (4-2-2-12), (4-2-2-13) and (4-2-2-14) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding and dissociation.</p>
+
</li><!-- /1.2.1. Expression of the <span style ="font-style : italic">mazEF</span> system -->
</li><!-- /1.2.1. Expression of Maz System -->
+
<li><h3>2.2. Cleavage by MazF dimers</h3>
<li><h3>1.2.2. Cleavage by MazF dimers</h3>
+
<p class="normal_text">MazF dimers recognize and cleave ACA sequences in mRNAs, thus acting as a toxin.We estimated the rate of recognitions of ACA sequences by MazF dimers at $$ 1-(1-f)^n $$ where n is the number of ACA sequences in mRNA and  f is the probability of distinction of ACA sequences on each mRNA. Then, we expressed the rate of degradation by MazF dimers in $$ F(1-(1-f)^{f_{mRNA}}) $$ and obtain the following set of differential equations.</p>
<p class="normal_text">MazF dimers recognize and cleave ACAs in mRNAs, thus acting as Toxin.</p>
+
<p class="normal_text">We estimated the rate of recognitions of ACA sequences by MazF dimers at \(1-(1-f)^n\), where the number of ACA sequences in mRNA.</p>
+
<p class="normal_text">Then, we expressed the rate of degradation by MazF dimers in \(F(1-(1-f)^{f_{mRNA}})\) and obtain the following set of differential equations.</p>
+
 
<h3>Snow White</h3>
 
<h3>Snow White</h3>
 
<p>$$\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF]
 
<p>$$\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF]
$$ <br />$$ \tag{4-2-3-1} $$</p>
+
$$ <br />$$ \tag{3-1} $$</p>
<p>$$
+
<p>$$\frac{d[mRNA_{RhlI}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}$$
\frac{d[mRNA_{RhlI}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}$$
+
<br />$$ \tag{3-2} $$</p>
<br />$$ \tag{4-2-3-2} $$</p>
+
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
+
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
$$ <br /> $$\tag{4-2-3-3}$$</p>
+
$$ <br /> $$\tag{3-3}$$</p>
 
<p>$$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
 
<p>$$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
<br />$$ \tag{4-2-3-4} $$</p>
+
<br />$$ \tag{3-4} $$</p>
 
<h3>Queen</h3>
 
<h3>Queen</h3>
 
<p>$$\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF]
 
<p>$$\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF]
$$<br />$$ \tag{4-2-3-5} %%</p>
+
$$<br />$$ \tag{3-5} $$</p>
 
<p>$$
 
<p>$$
\frac{d[mRNA_{LasI}]}{dt} =  leak_{P_{rhl}} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
+
\frac{d[mRNA_{LasI}]}{dt} =  leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$ <br />$$ \tag{4-2-3-6} $$</p>
+
       - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$ <br />$$ \tag{3-6} $$</p>
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{P_{lux}} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
+
<p>$$\frac{d[mRNA_{MazF}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
 
       - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF]
$$ <br /> $$\tag{4-2-3-7}$$</p>
+
$$ <br /> $$\tag{3-7}$$</p>
 
<p>$$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
 
<p>$$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
<br />$$ \tag{4-2-3-8} $$</p>
+
<br />$$ \tag{3-8} $$</p>
<p class="caption"><span style="font-weight: bold">Eq. 4-2-3. </span>Differential Equations of mRNAs</p>
+
<p class="caption"><span style="font-weight: bold">Eq. 3. </span>Differential equations of mRNA concentrations</p>
<p class="normal_text">The equations above comprise terms of production, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
+
<p class="normal_text">The equations above comprise terms of production, terms of only original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
 
</p>
 
</p>
 
</li><!-- /1.2.2. Cleavage by MazF dimers -->
 
</li><!-- /1.2.2. Cleavage by MazF dimers -->
 
</ul><!-- /modeling_maz_system -->
 
</ul><!-- /modeling_maz_system -->
</li><!-- /1.2. Maz System -->
+
</li><!-- /1.2. the Maz system -->
<li><h2>1.3. Signal Molecules</h2>
+
<li><h2>3. Signaling molecules</h2>
<p class="normal_text">Snow White expresses RhlI under Plux induced by C12, the Queen expresses LasI under Prhl induced by C4 and the Prince expresses AmiE under Plux induced by C12.</p>
+
<div style="text-align: center;"><a href="https://static.igem.org/mediawiki/2016/c/c4/T--Tokyo_Tech--Model_Details_6.png"><img src="https://static.igem.org/mediawiki/2016/c/c4/T--Tokyo_Tech--Model_Details_6.png" style="width: 800px;" /></a>
<p class="normal_text">The mRNAs of Snow White and the Queen decrease from original degradation and the cleavage at ACA sequences by MazF dimers.
+
<p class="caption"><span style="font-weight:bold;">Fig.5-5-3. Reaction of signaling molecules</span></p></div>
On the other hand, those of the Prince don’t have any MazF gene so they decrease from only original degradation.</p>
+
<p class="normal_text">Snow White <span style ="font-style : italic">coli</span> expresses RhlI under Plux induced by C12, the Queen <span style ="font-style : italic">coli</span> expresses LasI under Prhl induced by C4 and the Prince <span style ="font-style : italic">coli</span>  expresses AmiE under Plux induced by C12.<br>
<p class="normal_text">After translation, C12AHL and C4 are enzymatically synthesized by LasI and RhlI from some substrates respectively.
+
The mRNAs of Snow White <span style ="font-style : italic">coli</span> and the Queen <span style ="font-style : italic">coli</span> decrease from original degradation and the cleavage at ACA sequences by MazF dimers. On the other hand, those of the Prince <span style ="font-style : italic">coli</span> don’t have any MazF genes so they decrease from original degradation only.<br>
For simplicity, we assumed that the amount of substrates is sufficient so that the C12AHL / C4 synthesis rate per cell is estimated to be proportional to the LasI and RhlI concentrations.</p>
+
After translation, C4 and C12 are enzymatically synthesized by LasI and RhlI from some substrates respectively.<br>
<p class="normal_text">C4 decreases from original degradation meanwhile C12AHL decreases from both original degradation and degradation by AmiE, which Prince products.</p>
+
For simplicity, we assumed that the amount of substrates is sufficient so that the C4 and C12 synthesis rate per cell is estimated to be proportional to the LasI and RhlI concentrations.C4 decreases from original degradation only meanwhile C12 decreases from both original degradation and degradation by AmiE, which the Prince <span style ="font-style : italic">coli</span> produces.<br>
<p class="normal_text">Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
+
Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
<p class="normal_text">Equations (1), (4) and (7) describe the concentrations of mRNAs under the AHL inducing promoters.
+
<p>$$ \frac{d[mRNA_{RhlI}]}{dt} =  leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] $$<br />$$\tag{4-1}$$</p>
Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.</p>
+
<p>$$\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \tag{4-2}$$</p>
<p class="normal_text">The other ODEs describe how the concentrations of materials change in individuals, on the other hand (3), (6) describe the concentrations of C4 C12AHL in the whole culture medium.</p>
+
<p>$$ \frac{d[C4]}{dt} = p_{Rhl}[RhlI]P_{Snowwhite} - d_{C4}[C4] \tag{4-3} $$</p>
 +
<p>$$ \frac{d[mRNA_{LasI}]}{dt} =  leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$<br />$$\tag{4-4}$$</p>
 +
<p>$$\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \tag{4-5}$$</p>
 +
<p>$$\frac{d[C12]}{dt} = p_{C12}[LasI]P_{Stepmother} - d_{C12}[C12] - D[C12][AmiE]$$ <br /> $$\tag{4-6}$$</p>
 +
<p>$$\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{AmiE}]$$ <br />$$\tag{4-7}$$</p>
 +
<p>$$\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \tag{4-8} $$</p>
 +
 
 +
<p class="caption"><span style="font-weight: bold;">Eq. 4. </span> Differential equations of signaling molecules</p>
 +
 
 +
<p class="normal_text">Equations (4-1), (4-4) and (4-7) describe the concentrations of mRNAs under the AHL-inducible promoters.Thus, they comprise terms of production by leaky expression of promoters, terms of production by Hill function depending on the concentration of C4 and C12, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.<br>
 +
The other ODEs describe how the concentrations of materials change in individuals, on the other hand (4-3), (4-6) describe the concentrations of C4 and C12 in the whole culture medium.</p>
 
</li>
 
</li>
 
</ul><!-- /modeling_maz_list -->
 
</ul><!-- /modeling_maz_list -->
 
</div><!-- /modeling_maz_contents -->
 
</div><!-- /modeling_maz_contents -->
 +
 +
 +
<div class="back_link contents">
 +
<p class="normal_text"><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#mathematical_model">Back to Model page.</a></p>
 +
</div>
 
</div><!-- /modeling_maz_system -->
 
</div><!-- /modeling_maz_system -->
<div id="modeling_yaf_system" class="container container_bottom">
+
 
<div id="modeling_yaf_header" class="container_header">
+
<!-- /UNTIL HERE the Maz system -->
<h2><span>2. Yaf System (Alternative Design)</span></h2>
+
 
</div><!-- /modeling_yaf_header -->
+
 
<div id="modeling_yaf_contents" class="container_contents">
+
<div id="parameter_discriptions" class="container">
<p class="normal_text">We also designed alternative design with Yaf system as our plan B.</p>
+
<div id="parameter_discription_header" class="container_header">
<p class="normal_text">After translation, YafO and YafN exert their function alone.</p>
+
<h2><span>Parameters</span></h2>
<p class="normal_text">YafO forms an heterodimer with YafO and suppress the toxicity of YafO.</p>
+
</div><!-- /parameter_discription_header -->
<p class="nprmal_text">Applying mass action kinetic laws, we obtain the following set of differential equations.</p>
+
 
<p class="normal_text">Equations (1) and (6) describe the concentration of mRNAs under the AHL inducing promoters.
+
<!--  この辺から表 -->
Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function dependent on the concentration of C12/C4, terms of original degradation and terms of degradation by YafO.
+
<div id="parameter_discription_contents" class="container_contents">
Since Equations (5) and (10) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding dissociation.</p>
+
<table border="1" width="800px">
</div><!-- /modeling_yaf_contents -->
+
<tbody>
</div><!-- /modeling_yaf_system -->
+
<tr>
 +
<th>Parameter</th>
 +
<th>Value</th>
 +
<th>Description</th>
 +
<th>Reference</th>
 +
</tr>
 +
<tr>
 +
<td>$$ g $$</td>
 +
<td>$$ 0.0123 $$</td>
 +
<td>Growth rate of each cells</td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ P_{max} $$</td>
 +
<td>$$3.3 $$</td>
 +
<td>Carrying capacity</td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ E_{DiMazF} $$</td>
 +
<td>$$ 0.462234 nM^{-1} min^{-1} $$ </td>
 +
<td>Effect of MazF dimer on growth rate of each cells</td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ k $$</td>
 +
<td>$$5 min^{-1}$$</td>
 +
<td>Transcription rate of downstream of Ptet</td>
 +
<td>Reference<a href ="#references">[1]</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ leak_{Plux} $$</td>
 +
<td>$$ 2.26 min^{-1} $$</td>
 +
<td>Leakage of Plux</td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ leak_{Prhl} $$</td>
 +
<td>$$ 4.654 min^{-1} $$</td>
 +
<td>Leakage of Prhl</td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ κ_{Lux} $$</td>
 +
<td>$$ 6.984 nM^{-1} min^{-1} $$ </td>
 +
<td>Maximum transcription rate of under streams of Plux</td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ κ_{Rhl} $$</td>
 +
<td>$$ 14.95 nM^{-1} min^{-1} $$ </td>
 +
<td>Maximum transcription rate of understreams of Prhl</td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ n_{Lux} $$</td>
 +
<td>$$ 0.76 $$</td>
 +
<td>Hill coefficient for Plux</td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ n_{Rhl} $$</td>
 +
<td>$$ 5 $$</td>
 +
<td>Hill cofficient for Prhl</td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ K_{mLux} $$</td>
 +
<td>$$ 116.24nM $$</td>
 +
<td>Lumped parameter for the Lux system</td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ K_{mRhl} $$</td>
 +
<td>$$ 1000 nM $$</td>
 +
<td>Lumped parameter for the Rhl system</td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ F_{DiMazF} $$</td>
 +
<td> $$ 5 nM^{-1} min^{-1} $$</td>
 +
<td>Cutting rate at ACA sequences on mRNA by MazF dimers </td>
 +
<td> Assumption </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f $$</td>
 +
<td>$$ 0.299 $$</td>
 +
<td>The probability of distinction of ACA sequences on each mRNA</td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{RFP}} $$</td>
 +
<td>$$ 10 $$</td>
 +
<td>The number of ACA sequences on mRNA_{RFP}</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{GFP}} $$</td>
 +
<td>$$ 23 $$</td>
 +
<td>The number of ACA sequences on mRNA_{GFP}</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{RhlI}} $$</td>
 +
<td>$$ 1 $$</td>
 +
<td>The number of ACA sequences on mRNA_{RhlI}</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{LasI}} $$</td>
 +
<td>$$ 10 $$</td>
 +
<td>The number of ACA sequences on mRNA_{LasI}</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{MazF}} $$</td>
 +
<td> $$2$$ </td>
 +
<td>The number of ACA sequences on mRNA_{MazF}</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ f_{mRNA_{MazE}} $$</td>
 +
<td> $$2$$ </td>
 +
<td>The number of ACA sequences on mRNA_{MazE}</td>
 +
<td> Extraction of data </td>
 +
</tr>
 +
<tr>
 +
<td>$$ α $$</td>
 +
<td> $$ 0.04 min_{-1} $$ </td>
 +
<td>Translation rate of </td>
 +
<td> Assumption </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{DiMazF}$$</td>
 +
<td> $$ 6.82 nM_{-1} min_{-1} $$ </td>
 +
<td>Formation rate of MazF dimer </td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{-Di_{MazF}}$$</td>
 +
<td> $$ 6.24 nM^{-1} min^{-1} $$ </td>
 +
<td>Formation rate of MazF dimer </td>
 +
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{Di_{MazE}}$$</td>
 +
<td> $$ 3.46 nM^{-1} min^{-1} $$ </td>
 +
<td>Formation rate of MazF dimer </td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{-Di_{MazE}}$$</td>
 +
<td> $$ 7.25 min^{-1} $$ </td>
 +
<td>Dissociation rate of MazF dimer </td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{Hexa}$$</td>
 +
<td> $$ 4.51 nM^{-1} min^{-1} $$ </td>
 +
<td>Formation rate of Maz hexamer </td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ k_{-Hexa}$$</td>
 +
<td> $$ 4.05 min^{-1} $$ </td>
 +
<td>Dissociation rate of Maz hexamer </td>
 +
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</tr>
 +
<tr>
 +
<td>$$ p_{C4}$$</td>
 +
<td> $$ 0.07 min^{-1} $$ </td>
 +
<td> Production rate of C4HSL by RhlI </td>
 +
<td> Assumption </td>
 +
</tr>
 +
<tr>
 +
<td>$$ p_{C12}$$</td>
 +
<td> $$ 0.07 min^{-1} $$ </td>
 +
<td> Production rate of 3OC12HSL by LasI </td>
 +
<td>  Assumption </td>
 +
</tr>
 +
<tr>
 +
<td>$$ D $$</td>
 +
<td> $$ 0.1 nM^{-1} min^{-1} $$ </td>
 +
<td> Decomposition rate of 3OC12HSL by AmiE </td>
 +
<td> Assumption </td>
 +
</tr>
 +
<tr>
 +
    <td>$$ d $$</td>
 +
    <td>$$ 0.2773 min^{-1} $$ </td>
 +
    <td> Degradation rate of mRNA </td>
 +
    <td> Leference<a href ="#references">[2] </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{RFP} $$</td>
 +
    <td>$$ 0.005 min^{-1} $$ </td>
 +
    <td> Degradation rate of RFP </td>
 +
    <td> Assumption </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{GFP} $$</td>
 +
    <td>$$ 0.005 min^{-1} $$ </td>
 +
    <td> Degradation rate of GFP </td>
 +
    <td> Assumption </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{RhlI} $$</td>
 +
    <td>$$ 0.0167 min^{-1} $$ </td>
 +
    <td> Degradation rate of RhlI </td>
 +
    <td> Leference<a href ="#references">[1] </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{LasI} $$</td>
 +
    <td>$$ 0.0167 min^{-1} $$ </td>
 +
    <td> Degradation rate of LasI </td>
 +
    <td> Leference<a href ="#references">[1] </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{MazF} $$</td>
 +
    <td>$$ 0.7 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazF </td>
 +
    <td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{DiMazF} $$</td>
 +
    <td>$$ 0.17 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazF dimer </td>
 +
    <td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{MazE} $$</td>
 +
    <td>$$ 0.55 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazE </td>
 +
    <td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{DiMazE} $$</td>
 +
    <td>$$ 0.416 min^{-1} $$ </td>
 +
    <td> Degradation rate of MazE dimer </td>
 +
    <td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{Hexa} $$</td>
 +
    <td>$$ 0.511 min^{-1} $$ </td>
 +
    <td> Degradation rate of Maz hexameter </td>
 +
    <td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{C4} $$</td>
 +
    <td>$$ 0.000222 min^{-1} $$ </td>
 +
    <td> Degradation rate of C4HSL </td>
 +
    <td> Literature<a href ="#references">[3] </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{C12} $$</td>
 +
    <td>$$ 0.004 min^{-1} $$ </td>
 +
    <td> Degradation rate of 3OC12HSL </td>
 +
    <td> Literature<a href ="#references">[4] </td>
 +
</td>
 +
<tr>
 +
    <td>$$ d_{AmiE} $$</td>
 +
    <td>$$ 0.001 min^{-1} $$ </td>
 +
    <td> Degradation rate of AmiE </td>
 +
    <td> Assumption </td>
 +
</td>
 +
</tbody>
 +
</table>
 +
</div><!-- /parameter_discription_contents -->
 +
 
 +
<!-- この辺まで表 -->
 +
<div class="back_link contents">
 +
<p class="normal_text"><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#mathematical_model">Back to Model page.</a></p>
 +
</div>
 +
</div><!-- /parameter_discriptions -->
 +
 
 +
<div id="references" class="container container_bottom">
 +
<div id="references_header" class="container_header">
 +
<h2><span>References</span></h2>
 +
</div><!-- /references_header -->
 +
<div id="references_contents" class="container_contents">
 +
<p class="normal_text"> [1] <a href="https://2014.igem.org/Team:ETH_Zurich" target="_blank">https://2014.igem.org/Team:ETH_Zurich</a></p>
 +
<p class="normal_text"> [2] <a href="http://www.ncbi.nlm.nih.gov/pubmed/10329160" target="_blank">http://www.ncbi.nlm.nih.gov/pubmed/10329160</a></p>
 +
<p class="normal_text"> [3] <a href="https://www.ncbi.nlm.nih.gov/pubmed/19584835" target="_blank">https://www.ncbi.nlm.nih.gov/pubmed/19584835</a></p>
 +
<p class="normal_text"> [4] <a href="https://2015.igem.org/Team:Technion_HS_Israel" target="_blank">https://2015.igem.org/Team:Technion_HS_Israel</a></p>
 +
</div><!-- /references_contents -->
 +
</div><!-- /references -->
 
</div><!-- /main_contents -->
 
</div><!-- /main_contents -->
 
<script type="text/javascript">
 
<script type="text/javascript">

Latest revision as of 00:46, 20 October 2016

Model development

To simulate the cell-cell communication system, we developed an ordinary differential equation model. The following segments describe in detail how the equations were developed with the mazEF system.

Fig.5-5-1. The mazEF system gene circuit

Differencial equations

Snow White

\begin{equation} \frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] \end{equation} \begin{equation} \frac{d[RFP]}{dt} = \alpha [mRNA_{RFP}] - d_{RFP}[RFP] \end{equation} \begin{equation} \frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \end{equation} \begin{equation} \frac{d[C4]}{dt} = p_{C4}[RhlI]P_{Snow White} - d_{C4}[C4] \end{equation} \begin{equation} \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] \end{equation} \begin{equation} \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] \end{equation} \begin{equation} \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation} \begin{equation} \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE] \end{equation} \begin{equation} \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] \end{equation} \begin{equation} \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \end{equation} \begin{equation} \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} \end{equation}

Queen

\begin{equation} \frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] \end{equation} \begin{equation} \frac{d[GFP]}{dt} = \alpha [mRNA_{GFP}] - d_{GFP}[GFP] \end{equation} \begin{equation} \frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \end{equation} \begin{equation} \frac{d[C12]}{dt} = p_{C12}[LasI]P_{Queen} - d_{C12}[C12] - D[C12][AmiE] \end{equation} \begin{equation} \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] \end{equation} \begin{equation} \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] \end{equation} \begin{equation} \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation} \begin{equation} \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE] \end{equation} \begin{equation} \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] \end{equation} \begin{equation} \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \end{equation} \begin{equation} \frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}\\ \end{equation}

Prince

\begin{equation} \frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{AmiE}] \end{equation} \begin{equation} \frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \end{equation} \begin{equation} \frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \end{equation}

Explanation about parameters

Parameter Description
$$g$$ Growth rate of each cells
$$P_{max}$$ Carrying capacity
$$E_{DiMazF}$$ Effect of MazF dimer on growth rate
$$k$$ Transcription rate of downstream of Pcon
$$leak_{Plux}$$ Leakage of Plux
$$leak_{Prhl}$$ Leakage of Prhl
$$\kappa_{Lux}$$ Maximum transcription rate of mRNA under Plux
$$\kappa_{Rhl}$$ Maximum transcription rate of downstream of Prhl
$$n_{Lux}$$ Hill coefficient for Plux
$$n_{Rhl}$$ Hill coefficient for Prhl
$$K_{mLux}$$ Lumped paremeter for the Lux System
$$K_{mRhl}$$ Lumped paremeter for the Rhl System
$$F_{DiMazF}$$ Cutting rate at ACA sequences on mRNA by MazF dimer
$$f$$ The probability of distinction of ACA sequencess in each mRNA
$$f_{mRNA_{RFP}}$$ The number of ACA sequences in \(mRNA_{RFP}\)
$$f_{mRNA_{GFP}}$$ The number of ACA sequences in \(mRNA_{GFP}\)
$$f_{mRNA_{RhlI}}$$ The number of ACA sequences in \(mRNA_{RhlI}\) 
$$f_{mRNA_{LasI}}$$ The number of ACA sequences in \(mRNA_{LasI}\)
$$f_{mRNA_{MazF}}$$ The number of ACA sequences in \(mRNA_{MazF}\) 
$$f_{mRNA_{MazE}}$$ The number of ACA sequences in \(mRNA_{MazE}\) 
$$\alpha$$ Translation rate of Protein
$$k_{DiMazF}$$ Formation rate of MazF dimer
$$k_{-DiMazF}$$ Dissociation rate of MazF dimer
$$k_{DiMazE}$$ Formation rate of MazE dimer
$$k_{-DiMazE}$$ Dissociation rate of MazE dimer
$$k_{Hexa}$$ Formation rate of Maz hexamer
$$k_{-Hexa}$$ Dissociation rate of Maz hexamer
$$p_{C4}$$ Production rate of C4HSL by RhlI
$$p_{C12}$$ Production rate of 3OC12HSL by LuxI
$$D$$ Decomposition rate of 3OC12HSL by AmiE
$$d$$ Degradation rate of mRNA
$$d_{RFP}$$ Degradation rate of RFP
$$d_{GFP}$$ Degradation rate of GFP
$$d_{RhlI}$$ Degradation rate of RhlI
$$d_{LasI}$$ Degradation rate of LasI
$$d_{MazF}$$ Degradation rate of MazF
$$d_{DiMazF}$$ Degradation rate of MazF dimer
$$d_{MazE}$$ Degradation rate of MazE
$$d_{DiMazE}$$ Degradation rate of MazE dimer
$$d_{Hexa}$$ Degradation rate of Maz Hexamer
$$d_{C4}$$ Degradation rate of C4HSL
$$d_{C12}$$ Degradation rate of 3OC12HSL
$$d_{AmiE}$$ Degradation rate of AmiE

Expressions

  • 1. Cell population

    $$ \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} $$
    $$ \tag{1-1} $$

    $$ \frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}$$
    $$ \tag{1-2} $$

    $$ \frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \tag{1-3} $$

    Eq.1. Differential equation of cell population

    The equations above describe how each cell grows in the culture. Equations (1-1), (1-2) and (1-3) describe the populations of Snow White coli, the Queen coli and the Prince coli. (1-3) is described by the logistic growth equation, but (1-1) and (1-2) are represented by the growth inhibition by MazF dimers. This factor is designed so that its value is small when the concentration of MazF dimers is high, and its value converges to 1 when the concentration of MazF dimers is low.

  • 2. The mazEF system

    • 2.1. Expression of the mazEF system

      After translation, MazE and MazF each form a dimer which can be activated to exert its function.


      Two MazF dimers sandwich a MazE dimer, forming MazF2-MazE2-MazF2 heterohexamers and suppressing the toxicity of the MazF dimers.

      Fig.5-5-2. Reaction of the mazEF system

      The mRNAs of Snow White coli and the Queen coli decrease because of their original degradation and the cleavage at ACA sequences by MazF dimers.
      Applying mass action kinetic laws, we obtain the following set of differential equations.

      Snow White

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$ \tag{2-1} $$

      $$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$
      $$\tag{2-2}$$

      $$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$
      $$ \tag{2-3} $$

      $$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$
      $$ \tag{2-4} $$

      $$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
      $$\tag{2-5}$$

      $$ \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$
      $$\tag{2-6} $$

      $$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$
      $$ \tag{2-7}$$

      Queen

      $$ \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$ \tag{2-8} $$

      $$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$
      $$\tag{2-9}$$

      $$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$
      $$ \tag{2-10} $$

      $$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$
      $$ \tag{2-11} $$

      $$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
      $$\tag{2-12}$$

      $$ \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$
      $$\tag{2-13} $$

      $$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$
      $$ \tag{2-14}$$

      Eq. 2. Differential equations of the mazEF system

      Equations (2-1) and (2-8) describe the concentration of mRNAs under AHL-inducible promoters. Thus, they comprise terms of production by leaky expression of promoters, terms of production by Hill function dependent on the concentration of C4HSL (C4) and 3OC12HSL (C12), terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
      Since equations (2-2), (2-3), (2-5), (2-6), (2-7), (2-9), (2-10), (2-12), (2-13) and (2-14) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding and dissociation.

    • 2.2. Cleavage by MazF dimers

      MazF dimers recognize and cleave ACA sequences in mRNAs, thus acting as a toxin.We estimated the rate of recognitions of ACA sequences by MazF dimers at $$ 1-(1-f)^n $$ where n is the number of ACA sequences in mRNA and f is the probability of distinction of ACA sequences on each mRNA. Then, we expressed the rate of degradation by MazF dimers in $$ F(1-(1-f)^{f_{mRNA}}) $$ and obtain the following set of differential equations.

      Snow White

      $$\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF] $$
      $$ \tag{3-1} $$

      $$\frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}$$
      $$ \tag{3-2} $$

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$\tag{3-3}$$

      $$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
      $$ \tag{3-4} $$

      Queen

      $$\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF] $$
      $$ \tag{3-5} $$

      $$ \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$
      $$ \tag{3-6} $$

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$\tag{3-7}$$

      $$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
      $$ \tag{3-8} $$

      Eq. 3. Differential equations of mRNA concentrations

      The equations above comprise terms of production, terms of only original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.

  • 3. Signaling molecules

    Fig.5-5-3. Reaction of signaling molecules

    Snow White coli expresses RhlI under Plux induced by C12, the Queen coli expresses LasI under Prhl induced by C4 and the Prince coli expresses AmiE under Plux induced by C12.
    The mRNAs of Snow White coli and the Queen coli decrease from original degradation and the cleavage at ACA sequences by MazF dimers. On the other hand, those of the Prince coli don’t have any MazF genes so they decrease from original degradation only.
    After translation, C4 and C12 are enzymatically synthesized by LasI and RhlI from some substrates respectively.
    For simplicity, we assumed that the amount of substrates is sufficient so that the C4 and C12 synthesis rate per cell is estimated to be proportional to the LasI and RhlI concentrations.C4 decreases from original degradation only meanwhile C12 decreases from both original degradation and degradation by AmiE, which the Prince coli produces.
    Applying mass action kinetic laws, we obtain the following set of differential equations.

    $$ \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] $$
    $$\tag{4-1}$$

    $$\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \tag{4-2}$$

    $$ \frac{d[C4]}{dt} = p_{Rhl}[RhlI]P_{Snowwhite} - d_{C4}[C4] \tag{4-3} $$

    $$ \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$
    $$\tag{4-4}$$

    $$\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \tag{4-5}$$

    $$\frac{d[C12]}{dt} = p_{C12}[LasI]P_{Stepmother} - d_{C12}[C12] - D[C12][AmiE]$$
    $$\tag{4-6}$$

    $$\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{AmiE}]$$
    $$\tag{4-7}$$

    $$\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \tag{4-8} $$

    Eq. 4. Differential equations of signaling molecules

    Equations (4-1), (4-4) and (4-7) describe the concentrations of mRNAs under the AHL-inducible promoters.Thus, they comprise terms of production by leaky expression of promoters, terms of production by Hill function depending on the concentration of C4 and C12, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
    The other ODEs describe how the concentrations of materials change in individuals, on the other hand (4-3), (4-6) describe the concentrations of C4 and C12 in the whole culture medium.

Parameters

Parameter Value Description Reference
$$ g $$ $$ 0.0123 $$ Growth rate of each cells Fitted to experimental data
$$ P_{max} $$ $$3.3 $$ Carrying capacity Fitted to experimental data
$$ E_{DiMazF} $$ $$ 0.462234 nM^{-1} min^{-1} $$ Effect of MazF dimer on growth rate of each cells Fitted to experimental data
$$ k $$ $$5 min^{-1}$$ Transcription rate of downstream of Ptet Reference[1]
$$ leak_{Plux} $$ $$ 2.26 min^{-1} $$ Leakage of Plux Fitted to experimental data
$$ leak_{Prhl} $$ $$ 4.654 min^{-1} $$ Leakage of Prhl Fitted to experimental data
$$ κ_{Lux} $$ $$ 6.984 nM^{-1} min^{-1} $$ Maximum transcription rate of under streams of Plux Fitted to experimental data
$$ κ_{Rhl} $$ $$ 14.95 nM^{-1} min^{-1} $$ Maximum transcription rate of understreams of Prhl Fitted to experimental data
$$ n_{Lux} $$ $$ 0.76 $$ Hill coefficient for Plux Fitted to experimental data
$$ n_{Rhl} $$ $$ 5 $$ Hill cofficient for Prhl Fitted to experimental data
$$ K_{mLux} $$ $$ 116.24nM $$ Lumped parameter for the Lux system Fitted to experimental data
$$ K_{mRhl} $$ $$ 1000 nM $$ Lumped parameter for the Rhl system Fitted to experimental data
$$ F_{DiMazF} $$ $$ 5 nM^{-1} min^{-1} $$ Cutting rate at ACA sequences on mRNA by MazF dimers Assumption
$$ f $$ $$ 0.299 $$ The probability of distinction of ACA sequences on each mRNA Fitted to experimental data
$$ f_{mRNA_{RFP}} $$ $$ 10 $$ The number of ACA sequences on mRNA_{RFP} Extraction of data
$$ f_{mRNA_{GFP}} $$ $$ 23 $$ The number of ACA sequences on mRNA_{GFP} Extraction of data
$$ f_{mRNA_{RhlI}} $$ $$ 1 $$ The number of ACA sequences on mRNA_{RhlI} Extraction of data
$$ f_{mRNA_{LasI}} $$ $$ 10 $$ The number of ACA sequences on mRNA_{LasI} Extraction of data
$$ f_{mRNA_{MazF}} $$ $$2$$ The number of ACA sequences on mRNA_{MazF} Extraction of data
$$ f_{mRNA_{MazE}} $$ $$2$$ The number of ACA sequences on mRNA_{MazE} Extraction of data
$$ α $$ $$ 0.04 min_{-1} $$ Translation rate of Assumption
$$ k_{DiMazF}$$ $$ 6.82 nM_{-1} min_{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{-Di_{MazF}}$$ $$ 6.24 nM^{-1} min^{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{Di_{MazE}}$$ $$ 3.46 nM^{-1} min^{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{-Di_{MazE}}$$ $$ 7.25 min^{-1} $$ Dissociation rate of MazF dimer Fitted to experimental data
$$ k_{Hexa}$$ $$ 4.51 nM^{-1} min^{-1} $$ Formation rate of Maz hexamer Fitted to experimental data
$$ k_{-Hexa}$$ $$ 4.05 min^{-1} $$ Dissociation rate of Maz hexamer Fitted to experimental data
$$ p_{C4}$$ $$ 0.07 min^{-1} $$ Production rate of C4HSL by RhlI Assumption
$$ p_{C12}$$ $$ 0.07 min^{-1} $$ Production rate of 3OC12HSL by LasI Assumption
$$ D $$ $$ 0.1 nM^{-1} min^{-1} $$ Decomposition rate of 3OC12HSL by AmiE Assumption
$$ d $$ $$ 0.2773 min^{-1} $$ Degradation rate of mRNA Leference[2]
$$ d_{RFP} $$ $$ 0.005 min^{-1} $$ Degradation rate of RFP Assumption
$$ d_{GFP} $$ $$ 0.005 min^{-1} $$ Degradation rate of GFP Assumption
$$ d_{RhlI} $$ $$ 0.0167 min^{-1} $$ Degradation rate of RhlI Leference[1]
$$ d_{LasI} $$ $$ 0.0167 min^{-1} $$ Degradation rate of LasI Leference[1]
$$ d_{MazF} $$ $$ 0.7 min^{-1} $$ Degradation rate of MazF Fitted to experimental data
$$ d_{DiMazF} $$ $$ 0.17 min^{-1} $$ Degradation rate of MazF dimer Fitted to experimental data
$$ d_{MazE} $$ $$ 0.55 min^{-1} $$ Degradation rate of MazE Fitted to experimental data
$$ d_{DiMazE} $$ $$ 0.416 min^{-1} $$ Degradation rate of MazE dimer Fitted to experimental data
$$ d_{Hexa} $$ $$ 0.511 min^{-1} $$ Degradation rate of Maz hexameter Fitted to experimental data
$$ d_{C4} $$ $$ 0.000222 min^{-1} $$ Degradation rate of C4HSL Literature[3]
$$ d_{C12} $$ $$ 0.004 min^{-1} $$ Degradation rate of 3OC12HSL Literature[4]
$$ d_{AmiE} $$ $$ 0.001 min^{-1} $$ Degradation rate of AmiE Assumption