Difference between revisions of "Team:Pasteur Paris/Microbiology week11"

 
(One intermediate revision by one other user not shown)
Line 227: Line 227:
 
   <div id="week11">
 
   <div id="week11">
 
                   <p><h5><B>Week 11</B></h5></p>
 
                   <p><h5><B>Week 11</B></h5></p>
     <p><h3><B>August 16, 2016:</B></h3></p>
+
      
    <p>
+
        <a href="#exp1"><h4> 188. SDS-PAGE gel with inserts C2 v2 and B1 v2</h4></a></br>
+
        <a href="#exp2"><h4> 189. Harvest the culture of Miniprep</h4></a></br>
+
    </p>
+
 
     <p><h3><B>August 17, 2016:</B></h3></p>
 
     <p><h3><B>August 17, 2016:</B></h3></p>
 
     <p>
 
     <p>
         <a href="#exp3"><h4> 190. Miniprep of precultures B1 col1/B1 col2 and C2 col1 </h4></a></br>  
+
         <a href="#exp1"><h4> 188. Miniprep of precultures B1col1/B1col2 and C2col1 </h4></a></br>  
         <a href="#exp4"><h4> 191. Digestion of the plasmid pET43.1a(+) with A1/A2/D1/D2 </h4></a></br>  
+
         <a href="#exp2"><h4> 189. Digestion of the plasmid pET43.1a(+) with A1/A2/D1/D2 </h4></a></br>  
<a href="#exp5"><h4> 192. Electrophoresis on agarose gel of digestion products A1/A2/D1/D2 </h4></a></br>  
+
<a href="#exp3"><h4> 190. Electrophoresis on agarose gel of digestion products A1/A2/D1/D2/B1 col1/B1 col2/C2</h4></a></br>  
         <a href="#exp6"><h4> 193. Harvest the culture with Midiprep A1/A2/D1/D2/B1 col1/B1 col2/C2 </h4></a></br>  
+
         <a href="#exp4"><h4> 191. Harvest the culture with Midiprep A1/A2/D1/D2 </h4></a></br>  
        <a href="#exp7"><h4> 194. FPLC Purification of the protein </h4></a></br>
+
 
     </p>
 
     </p>
 
     <p><h3><B>August 18, 2016:</B></h3></p>
 
     <p><h3><B>August 18, 2016:</B></h3></p>
 
     <p>
 
     <p>
         <a href="#exp8"><h4> 195. Miniprep of cultures A1/A2/D1/D2/B1 col1/B2col2/C2 </h4></a></br>  
+
         <a href="#exp5"><h4> 192. Miniprep of A1/A2/D1/D2</h4></a></br>
        <a href="#exp9"><h4> 196. Protein gel on SDS-PAGE </h4></a></br>  
+
                <a href="#exp6"><h4> 193. Purification of the protein </h4></a></br>
                <a href="#exp10"><h4> 197. New colonies of B1 and C2 from 11/08</h4></a></br>
+
        <a href="#exp7"><h4> 194. Protein gel on SDS-Page </h4></a></br>
         <a href="#exp11"><h4> 198. Harvest the culture with Miniprep 4 colonies from A1, A2, D1 and D2, 2 colonies of B1 and 1 colony of C2</h4></a></br>
+
         <a href="#exp8"><h4> 195. Harvest the culture with Miniprep 4 colonies from A1, A2, D1 and D2, 2 colonies of B1 and 1 colony of C2</h4></a></br>
                <a href="#exp12"><h4> 199. FPLC Purification of the protein </h4></a></br>
+
  
 
     </p>
 
     </p>
 
     <p><h3><B>August 19, 2016:</B></h3></p>
 
     <p><h3><B>August 19, 2016:</B></h3></p>
 
     <p>
 
     <p>
         <a href="#exp13"><h4> 200. Miniprep of cultures made on the 18/08 </h4></a></br>
+
         <a href="#exp9"><h4> 196. Miniprep of cultures made on the 18/08 </h4></a></br>
         <a href="#exp14"><h4> 201. Measurement of the amount of DNA extracted from the Miniprep of B1 v2 and C2 v2</h4></a></br>  
+
         <a href="#exp10"><h4> 197. Measure the amount of DNA extracted from the miniprep of B1 and C2 </h4></a></br>  
         <a href="#exp15"><h4> 202. Digestion of the plasmid pET43.1a(+) with A1(0)/A1(1)/A1(3)/A1(4)/D1(3)/D1(4)/D2(2) </h4></a></br>  
+
         <a href="#exp11"><h4> 198. Digestion of the plasmid pET43.1a(+) with A1(0)/A1(1)/A1(3)/A1(4)/D1(3)/D1(4)/D2(2) </h4></a></br>  
         <a href="#exp16"><h4> 203. Electrophoresis on agarose gel of digestion products </h4></a></br>  
+
         <a href="#exp12"><h4> 199. Electrophoresis on agarose gel of digestion products </h4></a></br>
                 <a href="#exp17"><h4> 204. Sequencing of B1(1)/B1(2)/C2 from 18/08</h4></a></br>
+
                 <a href="#exp13"><h4> 200. Harvest preculture for miniprep of C2 and B1</h4></a></br>
                 <a href="#exp18"><h4> 205. Storage of proteins</h4></a></br>
+
    <p><h3><B>August 20, 2016:</B></h3></p>
    </p>
+
               
      
+
                <a href="#exp14"><h4> 201. Miniprep of C2 and B1</h4></a></br>
 +
                <a href="#exp15"><h4> 202. Measure the amount of DNA extracted from the miniprep of B1 and C2</h4></a></br>
 +
                 <a href="#exp16"><h4> 203. Digestion of E1(4 tubes)/E2(12tubes) and B2(14 tubes)</h4></a></br>
 +
                <a href="#exp17"><h4> 204. Electrophoresis on agarose gel of digestion products </h4></a></br>
 +
     <p>
  
 
     </p>
 
     </p>
  
  
     <div class="lightbox" id="exp3">
+
     <div class="lightbox" id="exp1">
 
       <figure>
 
       <figure>
 
           <a href="#" class="closemsg"></a>
 
           <a href="#" class="closemsg"></a>
 
             <figcaption>
 
             <figcaption>
 
               <p>
 
               <p>
               <U> Aim:</U> To perform a Miniprep to isolate pET43.1a(+) plasmid DNA with the inserts B1 col1, B1 col2 and C2 col1. The amplification method to increase the amount of plasmid is called Miniprep. </br> </br>
+
               <U> Aim:</U> To perform a Miniprep to isolate plasmid DNA of pET43.1a(+) with the inserts B1 col1, B1 col2 and C2 col1. The amplification method to increase the amount of plasmid is called Miniprep. </br> </br>
 
               <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/d/d5/T--Pasteur_Paris--Miniprep_protocol.pdf">link</a></br></br>
 
               <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/d/d5/T--Pasteur_Paris--Miniprep_protocol.pdf">link</a></br></br>
 
               <U>What we did in the lab:</U></br>
 
               <U>What we did in the lab:</U></br>
Line 279: Line 278:
  
 
</br></br>
 
</br></br>
               <U>Method:</U></br>The protocol in step 1 asks for spinning at 6000g but we can only achieve 3500g so we used 3500g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below.</br>
+
               <U>Method:</U></br>The protocol in step 1 ask for spinning at 6000g but we can only achieve 3500 g so we used 3500 g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below.</br>
 
                       1.Follow QIAGEN kit steps</br>
 
                       1.Follow QIAGEN kit steps</br>
 
               </p>
 
               </p>
Line 286: Line 285:
 
     </div>
 
     </div>
  
     <div class="lightbox" id="exp4">
+
     <div class="lightbox" id="exp2">
 
       <figure>
 
       <figure>
 
           <a href="#" class="closemsg"></a>
 
           <a href="#" class="closemsg"></a>
Line 295: Line 294:
 
                   <U>What we did in the lab:</U></br>
 
                   <U>What we did in the lab:</U></br>
 
                   <U>Materials:</U></br>
 
                   <U>Materials:</U></br>
                     &bull; Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
+
                     &bull; Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
 
                     &bull; Restriction enzyme buffers </br>
 
                     &bull; Restriction enzyme buffers </br>
 
                     &bull; 37°C water bath</br>
 
                     &bull; 37°C water bath</br>
Line 302: Line 301:
 
                       1. Mix all the reagents and let digest during 2 hr at 37°C. </br> Big volumes must be added first!</br>Beginning of digestion 12h10.</br>
 
                       1. Mix all the reagents and let digest during 2 hr at 37°C. </br> Big volumes must be added first!</br>Beginning of digestion 12h10.</br>
 
                   <table>
 
                   <table>
 +
<caption align="bottom" align="center"><i><p> <U>Table 125</U></p></i></caption>
 
                     <thead>
 
                     <thead>
 
                         <tr>
 
                         <tr>
Line 316: Line 316:
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
                             <td><strong><p>Vol<sub>Xba I</sub></p></strong></td>
+
                             <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                           </tr>
 
                           </tr>
 
                           <tr>
 
                           <tr>
                             <td><strong><p>Vol<sub>Hind III</sub></p></strong></td>
+
                             <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
 
                             <td>1 &#181;L </td>
Line 350: Line 350:
 
     </div>
 
     </div>
  
     <div class="lightbox" id="exp5">
+
     <div class="lightbox" id="exp3">
 
       <figure>
 
       <figure>
 
           <a href="#" class="closemsg"></a>
 
           <a href="#" class="closemsg"></a>
Line 358: Line 358:
 
                     <U>What we did in the lab:</U></br>
 
                     <U>What we did in the lab:</U></br>
 
                     <U>Materials:</U></br>
 
                     <U>Materials:</U></br>
                           &bull; Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
+
                           &bull; Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
 
                           &bull; Restriction enzyme buffers </br>
 
                           &bull; Restriction enzyme buffers </br>
 
                           &bull; 37°C water bath</br>
 
                           &bull; 37°C water bath</br>
 
                           &bull; UV spectrophotometer</br></br>
 
                           &bull; UV spectrophotometer</br></br>
 
                     <U>Method:</U></br>
 
                     <U>Method:</U></br>
                           &bull; Electrophoresis chamber </br>
+
                           &bull; Electrophoresis cuve </br>
 
                           &bull; TAE 1X </br>
 
                           &bull; TAE 1X </br>
 
                           &bull; Gene ruler (Thermoscientific 1kb plus) </br>
 
                           &bull; Gene ruler (Thermoscientific 1kb plus) </br>
                           &bull; Loading dye 6X </br>
+
                           &bull; Loading dye </br>
 
                           &bull; Agarose </br>
 
                           &bull; Agarose </br>
 
                           &bull; UV table </br>
 
                           &bull; UV table </br>
                           &bull; Ethidium bromide drops (EB) </br></br></br>
+
                           &bull; BET </br></br></br>
                     Beginning of the electrophoresis at 14h30 at 100 V. </br></br></br>
+
                     Beginning of the electrophoresis at 14h30 at 100V. </br></br></br>
 
                     <U>Results:</U></br>The gel reveals that A1 contains the insert but the amount of DNA is too low so we will redo the experiment.</br>
 
                     <U>Results:</U></br>The gel reveals that A1 contains the insert but the amount of DNA is too low so we will redo the experiment.</br>
 
                 </p>
 
                 </p>
Line 379: Line 379:
  
  
<div class="lightbox" id="exp6">
+
<div class="lightbox" id="exp4">
 
   <figure>
 
   <figure>
 
     <a href="#" class="closemsg"></a>
 
     <a href="#" class="closemsg"></a>
 
     <figcaption>
 
     <figcaption>
 
         <p>
 
         <p>
             <U> Aim:</U>  To start a culture for Midiprep. </br>In order to obtain a large amount of plasmid, we need to grow the bacteria overnight in a larger volume of LB media. </br> </br>
+
             <U> Aim:</U>  To start a culture for Midiprep. </br>In order to obtain a large amount of plasmid, we need to grow the bacteria overnight. </br> </br>
 
             <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/4/4b/T--Pasteur_Paris--Bacterial_culture_protocol.pdf">link</a></br></br>
 
             <U> Protocol:</U> follow in this <a href="https://static.igem.org/mediawiki/2016/4/4b/T--Pasteur_Paris--Bacterial_culture_protocol.pdf">link</a></br></br>
 
             <U>What we did in the lab:</U></br>
 
             <U>What we did in the lab:</U></br>
Line 394: Line 394:
 
                 &bull; LB medium </br></br> </br>
 
                 &bull; LB medium </br></br> </br>
 
             <U>Method:</U></br>
 
             <U>Method:</U></br>
                   2.One colony is picked from the plates and shaken in 25 ml of LB supplemented with carbenicillin at 50 &#181;g/ml. This step is done with the inserts A1/A2/D1/D2 and B1/B2 for sequencing. </br>
+
                   2.One colony is picked from the plates and shaken in 25 ml of LB supplemented with Carbenicillin at 50 μg/ml. This step is done with the inserts A1/A2/D1/D2 and B1/B2 for sequencing. </br>
 
                   3.The flask is placed in a shaking incubator at 37°C, 150 rpm overnight. </br></br> </br>
 
                   3.The flask is placed in a shaking incubator at 37°C, 150 rpm overnight. </br></br> </br>
 
         </p>
 
         </p>
Line 425: Line 425:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
The protocol in step 1 ask for spinning at 6000g but we can only achieve 3500g so we used 3500g for 20 minutes. We will follow most of the protocol of QIAGEN Midiprep 2016 except for a few modifications, which we describe, therefore, below. </br>
+
The protocol in step 1 ask for spinning at 6000 g but we can only achieve 3500 g so we used 3500 g for 20 minutes. We will follow most of the protocol of QIAGEN Midiprep 2016 except for a few modifications, which we describe, therefore, below. </br>
  
 
1. Use culture from overnight (17 hr) step on June 7, 2016 </br>
 
1. Use culture from overnight (17 hr) step on June 7, 2016 </br>
2. Pour culture in 50 ml Falcon and centrifuge (15 min, 3500g, 4°C) </br>
+
2. Pour culture in 50 ml Falcon nd centrifuge (15 min, 3500 g, 4°C) </br>
 
3. Discard the supernatant (in biological waste) and add 4 ml of Buffer P1 (stored on ice) to the pellet </br>
 
3. Discard the supernatant (in biological waste) and add 4 ml of Buffer P1 (stored on ice) to the pellet </br>
 
4. Add 4 ml of Buffer P2 (for cell lysis) and mix by inverting the Falcon a few times. Wait 5 min at 22°C (room temperature: RT, EU). Note: The color of the solution will change to blue. </br>
 
4. Add 4 ml of Buffer P2 (for cell lysis) and mix by inverting the Falcon a few times. Wait 5 min at 22°C (room temperature: RT, EU). Note: The color of the solution will change to blue. </br>
Line 438: Line 438:
 
Because we have only bench microfuges, we need to dispense our volume in smaller fractions. </br>
 
Because we have only bench microfuges, we need to dispense our volume in smaller fractions. </br>
 
10. Elution of DNA with 5 ml of QF and aliquot in 2 ml tubes </br>
 
10. Elution of DNA with 5 ml of QF and aliquot in 2 ml tubes </br>
11. Centrifuge (30 min, 15000g, room temperature) </br>
+
11. Centrifuge (30 min, 15000 g, room temperature) </br>
 
12. Add 3.5 ml of isopropanol, mix to precipitate the DNA </br>
 
12. Add 3.5 ml of isopropanol, mix to precipitate the DNA </br>
13. Centrifuge (30 min, 15 000g, at RT) </br>
+
13. Centrifuge (30 min, 15 000 g, at RT) </br>
 
14. Remove isopropanol with pipet without taking DNA and place into chemical waste container </br>
 
14. Remove isopropanol with pipet without taking DNA and place into chemical waste container </br>
 
15. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000 g, RT) and let air dry.
 
15. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000 g, RT) and let air dry.
16. Resuspend in 50 &#181;l of Tris 10 mM pH 8.0, EDTA, 1 mM (TE) and store at -20°C.</br>
+
16. Resuspend in 50 &#181;L of Tris 10 mM pH 8.0, EDTA, 1 mM (TE) and store at -20°C.</br>
 
</p>
 
</p>
 
</figcaption>
 
</figcaption>
Line 451: Line 451:
  
  
<div class="lightbox" id="exp12">
+
<div class="lightbox" id="exp6">
 
   <figure>
 
   <figure>
 
     <a href="#" class="closemsg"></a>
 
     <a href="#" class="closemsg"></a>
 
     <figcaption>
 
     <figcaption>
  
<p><U> Aim:</U> The previous purification shows a significant band at 30 kDa for the samples 22 and 24 but also one at 70 kDa. It probably left some NusA in our column so, it will be cleaned.br>
+
<p><U> Aim:</U> The previous purification shows a significant band at 30kDa for the samples 22 and 24 but also one at 70kDa. It probably left some NusA in our column so, it will be cleaned.br>
 
  </br>
 
  </br>
  
Line 468: Line 468:
 
&bull;  Fast Purification Liquid Chromatography </br>
 
&bull;  Fast Purification Liquid Chromatography </br>
 
&bull;  Chaotropic reagent (Guanidinium 6M) </br>
 
&bull;  Chaotropic reagent (Guanidinium 6M) </br>
&bull;  EDTA 0.1 M </br>
+
&bull;  EDTA 0,1M </br>
&bull;  PMSF (100 mM) </br>
+
&bull;  PMSF (100mM) </br>
&bull;  Ni 2+ solution (100 mM) </br>
+
&bull;  Ni 2+ solution (100mM) </br>
&bull;  Centrifuge (labo Deshmukh)
+
&bull;  Centrifuge (labo deshmukh)
 
</br></br>
 
</br></br>
 
<U>Method:</U></br>
 
<U>Method:</U></br>
1. Melt the pellet of bacteria C2 (from 1 l culture) and resuspend it with 10 ml of buffer A </br>
+
1. Melt the pellet of bacteria C2 (from 1 L culture) and resuspend it with 10 ml of buffer A </br>
2. Put the column off the FPLC and wash it with 20 ml of MilliQ water thanks to a finger tight connector and a syringe. </br>
+
2. Put the column off the FPLC and wash it with 20 ml of milliQ water thanks to a fingerpit ans a syringue. </br>
3. Add 20 ml of 6M Guanidinium Hydrochloride chaotropic reagent to denature the proteins fixed to the column </br>
+
3. Add 20 ml of chaotropic reagent to denaturate the proteins fixed to the column </br>
 
4. Wash the column with 20 ml of water </br>
 
4. Wash the column with 20 ml of water </br>
5. Add 10 ml of EDTA to clean it of nickel ions </br>
+
5. Add 10 ml of EDTA to clean it from nickel </br>
 
6. Wash with 20 ml of water </br>
 
6. Wash with 20 ml of water </br>
7. Add 5 ml of NiCl<sub>2</sub> solution to charge the column. The column turns green. </br>
+
7. Add 5ml of Ni solution to charge the column. The column turns green. </br>
 
8. Wash with 20 ml of water </br>
 
8. Wash with 20 ml of water </br>
9. Sonicate the sample three times one minute at 60%, wait 90 seconds between each sonication, Finally, the sample volume is 40 ml, add 40 &micro;l of PMSF to avoid protein degradation by proteases. </br>
+
9. Sonicate the sample three times one minute at 60%, wait 90 seconds between each sonication, Finally, the sample is 40 ml, add 40 &microL of PMSF to avoid protein denaturation. </br>
10. Centrifuge 25 min at 16000g (Beckman rotor JA 25.50) </br>
+
10. Centrifuge 25 min at 16000 g (rotor JA 25.50) </br>
11. Inject the sample on the column of the FPLC </br>
+
11. Inject your sample in the FPLC </br>
12. Save several stages as frozen samples for later analysis: </br>
+
12. Get back several samples: </br>
 
&bull; C= Crude extract : before centrigugation </br>
 
&bull; C= Crude extract : before centrigugation </br>
 
&bull; P= Pellet </br>
 
&bull; P= Pellet </br>
Line 502: Line 502:
 
     <figcaption>
 
     <figcaption>
  
<p ><U> Aim:</U> Get the size of the protein purified thanks to the FPLC in order to know if it is our protein  </br></br>
+
<p ><U> Aim:</U> Get the size of the protein purified thanks to FPLC in order to know if it is our protein  </br></br>
  
 
<U>What we did in the lab:</U>
 
<U>What we did in the lab:</U>
Line 510: Line 510:
 
<U>Materials:</U>
 
<U>Materials:</U>
 
</br>
 
</br>
&bull; SDS-PAGE chamber </br>
+
&bull; SDS-Page cuve </br>
&bull; SDS-PAGE 4-15 &#37; gradient gel (BIORAD) </br>
+
&bull; SDS-Page gel (BIORAD) </br>
 
&bull; Protein migration buffer </br>
 
&bull; Protein migration buffer </br>
&bull; Protein PAGE ruler plsu (Thermofisher)Ladder </br>
+
&bull; Protein ladder </br>
 
&bull; Laemmli 2X </br>
 
&bull; Laemmli 2X </br>
&bull; Gel code blue (Coomassie Blue G250)</br>
+
&bull; Coomassie Blue </br>
 
&bull; Microbiology equipment (Follow this link) </br> </br>
 
&bull; Microbiology equipment (Follow this link) </br> </br>
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
1. In 9 1.5 ml eppendorf, put 20 &#181;l of a sample and 20 &#181;l of Laemmli 2X. </br>
+
1. In 9 1.5 ml eppendorf, put 20 &#181;L of a sample and 20 &#181;L of Laemmli 2X. </br>
 
2. Place the gel into the cuve and fill it with migration buffer </br>
 
2. Place the gel into the cuve and fill it with migration buffer </br>
 
3. Follow the next deposit table: </br>
 
3. Follow the next deposit table: </br>
Line 538: Line 538:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
We notice a 30kDa band in the well 9 and 10 so we redo a gel with the fractions 21 to 25. Follow exactly the same protocol but with 30 &micro;l of DNA and 30 &micro;l of Laemmli 2X. </br>
+
We notice a 30kDa band in the well 9 and 10 so we redo a gel with the fractions 21 to 25. Follow exactly the same protocol but with 30 &microL of DNA and 30 &microL of Laemmli 2X. </br>
 
Deposit table: </br>
 
Deposit table: </br>
 
- Protein ruler 8 &#181;l </br>
 
- Protein ruler 8 &#181;l </br>
Line 550: Line 550:
 
- Fraction 26 </br>
 
- Fraction 26 </br>
 
- Fraction 27 </br>
 
- Fraction 27 </br>
We notice a 30kDa band in the fractions 19 to 21 that may correspond to our protein and a 70 kDa band due to NusA in fractions 23 to 25.</br> </br>
+
We notice a 30kDa band in the fractions 19 to 21 that may correspond to our protein and a 70kDa band due to NusA in fractions 23 to 25.</br> </br>
 
</p>
 
</p>
 
</figcaption>
 
</figcaption>
Line 580: Line 580:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
17. One colony is picked from the plates and shaken in 3 ml of LB supplemented with carbenicillin at 50 &#181;g/ml. This step is done with the inserts A1/A2/D1/D2/C2 and  two colonies B1. </br>
+
17. One colony is picked from the plates and shaken in 3 ml of LB supplemented with Carbenicillin at 50 &#181;g/ml. This step is done with the inserts A1/A2/D1/D2/C2 and  two colonies B1. </br>
 
18. The Falcon tube is placed in a shaking incubator at 37°C, 150 rpm overnight. </br> </br>
 
18. The Falcon tube is placed in a shaking incubator at 37°C, 150 rpm overnight. </br> </br>
 
</p>
 
</p>
Line 609: Line 609:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
  The protocol in step 1 ask for spinning at 6000g but we can only achieve 3500g so we used 3500g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below. </br>
+
  The protocol in step 1 ask for spinning at 6000 g but we can only achieve 3500 g so we used 3500 g for 8 minutes. We will follow most of the protocol of QIAGEN Miniprep 2016 except for a few modifications, which we describe, therefore, below. </br>
  
 
19. Follow QIAGEN kit steps </br> </br>
 
19. Follow QIAGEN kit steps </br> </br>
Line 637: Line 637:
  
 
<U>Method:</U></br>
 
<U>Method:</U></br>
Analyze absorbance at 260 nm</br>
+
Analyze absorbance at 260nm</br>
 
1. Clean the Nanodrop with water</br>
 
1. Clean the Nanodrop with water</br>
 
2. Make the blank with 1 &#181;l of elution buffer</br>
 
2. Make the blank with 1 &#181;l of elution buffer</br>
3. Put 1 &181;l of your sample on the Nanodrop</br>
+
3. Put 1ul of your sample on the Nanodrop</br>
 
4. Make the measure and clean the Nanodrop between each measure</br></br>
 
4. Make the measure and clean the Nanodrop between each measure</br></br>
  
 
<U>Results:</U></br>
 
<U>Results:</U></br>
 
<table>
 
<table>
 +
<caption align="bottom" align="center"><i><p> <U>Table 126</U></p></i></caption>
 
   <thead>
 
   <thead>
 
     <tr>
 
     <tr>
Line 695: Line 696:
 
</br>
 
</br>
  
&bull; Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
+
&bull; Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
 
&bull; Restriction enzyme buffers </br>
 
&bull; Restriction enzyme buffers </br>
 
&bull; 37°C water bath </br>
 
&bull; 37°C water bath </br>
Line 708: Line 709:
  
 
<table>
 
<table>
 +
<caption align="bottom" align="center"><i><p> <U>Table 127</U></p></i></caption>
 
   <thead>
 
   <thead>
 
     <tr>
 
     <tr>
Line 717: Line 719:
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>DNA</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>DNA</sub></p></strong></td>
       <td>30  &#181;l </td>
+
       <td>30  &#181;L </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
       <td>1  &#181;l</td>
+
       <td>1  &#181;L</td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
       <td>1  &#181;l </td>
+
       <td>1  &#181;L </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 733: Line 735:
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>Buffer Cutsmart (10X)</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>Buffer Cutsmart (10X)</sub></p></strong></td>
       <td>5  &#181;l </td>
+
       <td>5  &#181;L </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
 
       <td><strong><p>Vol<sub>total</sub></p></strong></td>
 
       <td><strong><p>Vol<sub>total</sub></p></strong></td>
       <td>50  &#181;l </td>
+
       <td>50  &#181;L </td>
 
   </tbody>
 
   </tbody>
 
</table>
 
</table>
Line 769: Line 771:
 
&bull; TAE 1X </br>
 
&bull; TAE 1X </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
&bull; Loading dye 6X</br>
+
&bull; Loading dye </br>
 
&bull; Agarose </br>
 
&bull; Agarose </br>
 
&bull; UV table </br>
 
&bull; UV table </br>
Line 776: Line 778:
  
 
<U>Method:</U></br>  
 
<U>Method:</U></br>  
Each well will contain 30 &#181;l of DNA and 6 &#181;l of Loading Dye. </br>  
+
Each well will contain 30 &#181;L of DNA and 6 &#181;L of Loading Dye. </br>  
 
Follow the next deposit table :</br>  
 
Follow the next deposit table :</br>  
 
Loading dye (6 &#181;L ) / A1 (1) / A1 (2) / A1 (3) / A1 (4) / D1 (1) / D1 (2) / D2 (2)</br>  
 
Loading dye (6 &#181;L ) / A1 (1) / A1 (2) / A1 (3) / A1 (4) / D1 (1) / D1 (2) / D2 (2)</br>  
Line 854: Line 856:
 
4. Centrifuge (30 min, 15 000g, at RT)</br>
 
4. Centrifuge (30 min, 15 000g, at RT)</br>
 
5. Remove isopropanol with pipet without taking DNA and place into chemical waste container</br>
 
5. Remove isopropanol with pipet without taking DNA and place into chemical waste container</br>
6. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000g, RT) and let air dry</br>
+
6. Add 1 ml of 70% ethanol, centrifuge again (15 min, 15 000 g, RT) and let air dry</br>
7. Resuspend in 50 &micro;l of Tris 10 mM pH 8.0, EDTA 1 mM (TE) and store at -20°C</br></br>
+
7. Resuspend in 50 &microL of Tris 10 mM pH 8.0, EDTA, 1 mM (TE) and store at -20°C</br></br>
 
</p>
 
</p>
 
</figcaption>
 
</figcaption>
Line 881: Line 883:
 
Analyze absorbance at 260 nm</br>
 
Analyze absorbance at 260 nm</br>
 
15. Clean the Nanodrop with water</br>
 
15. Clean the Nanodrop with water</br>
16. Make the blank with 1 &micro;l of elution buffer</br>
+
16. Make the blank with 1ul of elution buffer</br>
 
17. Put 1ul of your sample on the Nanodrop</br>
 
17. Put 1ul of your sample on the Nanodrop</br>
 
18. Make the measure and clean the Nanodrop between each measure</br></br>
 
18. Make the measure and clean the Nanodrop between each measure</br></br>
Line 887: Line 889:
 
<U>Results:</U></br>
 
<U>Results:</U></br>
 
<table>
 
<table>
 +
<caption align="bottom" align="center"><i><p> <U>Table 128</U></p></i></caption>
 
   <thead>
 
   <thead>
 
     <tr>
 
     <tr>
Line 898: Line 901:
 
   <tbody>
 
   <tbody>
 
     <tr>
 
     <tr>
       <td><strong><p>A<sub>260 nm</sub></p></strong></td>
+
       <td><strong><p>A<sub>260</sub></p></strong></td>
 
       <td>1.057/td>
 
       <td>1.057/td>
 
       <td>1.323</td>
 
       <td>1.323</td>
Line 905: Line 908:
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong>A<sub>280 nm</sub></strong></td>
+
       <td><strong>A<sub>280</sub></strong></td>
 
       <td>0.627</td>
 
       <td>0.627</td>
 
       <td>0.698</td>
 
       <td>0.698</td>
Line 912: Line 915:
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong>A<sub>260 nm</sub>/A<sub>280 nm</sub></strong></td>
+
       <td><strong>A<sub>260</sub>/A<sub>280</sub></strong></td>
 
       <td>1.69</td>
 
       <td>1.69</td>
 
       <td>1.89</td>
 
       <td>1.89</td>
Line 948: Line 951:
 
<U>Materials:</U>
 
<U>Materials:</U>
 
</br>
 
</br>
&bull;  Restriction enzymes: Xba I, Hind III (New England Biolabs, NEB) </br>
+
&bull;  Restriction enzymes: XbaI, HindIII (New England Biolabs, NEB) </br>
 
&bull;  Restriction enzyme buffers </br>
 
&bull;  Restriction enzyme buffers </br>
 
&bull;  37°C water bath </br>
 
&bull;  37°C water bath </br>
Line 960: Line 963:
  
 
<table>
 
<table>
 +
<caption align="bottom" align="center"><i><p> <U>Table 129</U></p></i></caption>
 
   <thead>
 
   <thead>
 
     <tr>
 
     <tr>
Line 974: Line 978:
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong><p>Vol<sub>Xba I</sub></p></strong></td>
+
       <td><strong><p>Vol<sub>XbaI</sub></p></strong></td>
 
       <td>2.25 &#181;l </td>
 
       <td>2.25 &#181;l </td>
 
       <td>65.25 &#181;l </td>
 
       <td>65.25 &#181;l </td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
       <td><strong><p>Vol<sub>Hind III</sub></p></strong></td>
+
       <td><strong><p>Vol<sub>HindIII</sub></p></strong></td>
 
       <td>2.25 &#181;l </td>
 
       <td>2.25 &#181;l </td>
 
       <td>65.25 &#181;l </td>
 
       <td>65.25 &#181;l </td>
Line 1,027: Line 1,031:
 
&bull; TAE 1X </br>
 
&bull; TAE 1X </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
 
&bull; Gene ruler (Thermoscientific 1kb plus) </br>
&bull; Loading dye 6X</br>
+
&bull; Loading dye </br>
 
&bull; Agarose </br>
 
&bull; Agarose </br>
 
&bull; UV table </br>
 
&bull; UV table </br>
Line 1,036: Line 1,040:
 
Deposit table (/// means EMPTY to make the cut easier) </br>
 
Deposit table (/// means EMPTY to make the cut easier) </br>
  
Gel 1 Lane 1 : </br>
+
Gel 1 Line 1 : </br>
 
Loading dye /// B2(2) / B2(2) /// B2(3) / B2(3) /// B2(4) / B2(4) /// B2(5) / B2(5) /// B2(1) / B2(1) /// B2(6) / B2(6) </br> </br>
 
Loading dye /// B2(2) / B2(2) /// B2(3) / B2(3) /// B2(4) / B2(4) /// B2(5) / B2(5) /// B2(1) / B2(1) /// B2(6) / B2(6) </br> </br>
  
Gel 1 Lane 2 : </br>
+
Gel 1 Line 2 : </br>
 
Loading dye /// B2(7) / B2(7) /// B2(8) / B2(8) /// B2(9) / B2(9) /// B2(10) / B2(10) /// B2(11) / B2(11) /// B2(12) / B2(12) </br> </br>
 
Loading dye /// B2(7) / B2(7) /// B2(8) / B2(8) /// B2(9) / B2(9) /// B2(10) / B2(10) /// B2(11) / B2(11) /// B2(12) / B2(12) </br> </br>
  
  
Gel 2 Lane 1 : </br>
+
Gel 2 Line 1 : </br>
 
Loading dye /// E1(1) / E1(1) /// E1(2) / E1(2) /// E1(3) / E1(3) /// E2(1) / E2(1) /// E2(2) / E2(2) /// E2(3) / E2(3) /// E2(4) / E2(4) /// E2(5) / E2(5) /// E2(6) / E2(6) /// E2(7) / E2(7) </br> </br>
 
Loading dye /// E1(1) / E1(1) /// E1(2) / E1(2) /// E1(3) / E1(3) /// E2(1) / E2(1) /// E2(2) / E2(2) /// E2(3) / E2(3) /// E2(4) / E2(4) /// E2(5) / E2(5) /// E2(6) / E2(6) /// E2(7) / E2(7) </br> </br>
  
Gel 2 Lane 2 : </br>
+
Gel 2 Line 2 : </br>
 
Loading dye /// E2(8) / E2(8) /// E2(9) / E2(9) /// E2(10) / E2(10) /// E2(11) / E2(11) /// E2(12) / E2(12) /// E2(13) / E2(13) /// B2(13) / B2(13) /// B2(14) / B2(14) /// </br> </br>
 
Loading dye /// E2(8) / E2(8) /// E2(9) / E2(9) /// E2(10) / E2(10) /// E2(11) / E2(11) /// E2(12) / E2(12) /// E2(13) / E2(13) /// B2(13) / B2(13) /// B2(14) / B2(14) /// </br> </br>
 
</p>
 
</p>
Line 1,109: Line 1,113:
 
   </figure>
 
   </figure>
 
</div>
 
</div>
</div>
+
 
</div>
+
  
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 01:27, 20 October 2016