<center>1. Binding of a σ-factor on a promoter. 2. Recruitment of RNA polymerase subunits on the σ-factor. 3. Open complex formation and beginning of transcription. 4. Release of the σ-factor and elongation</center>
<center>1. Binding of a σ-factor on a promoter. 2. Recruitment of RNA polymerase subunits on the σ-factor. 3. Open complex formation and beginning of transcription. 4. Release of the σ-factor and elongation</center>
Line 89:
Line 89:
−
Because of this periodicity, regulation could be effective in particular area of the chromosome, leading to a fine, but integral, tuning of the genes involved in the same pathway. That's why concepts such as regulons (genes that are usually geographically scattered but under the control of the same regulatory factor), who were initially described with a 2D vision of the bacterial chromosomes, could be specified with the incorporation of new researches. Theories behind these concepts focused on protein-protein interaction after translation, wich occurs at the same time as transcription in bacteria. Indeed, products of gene-coding-protein are synthesized near their gene and the pairing of genes can results in an increasing probability for the two proteins to interact with each others '''[Fig.6]''' (Dorman 2013).
+
Because of this periodicity, regulation could be effective in particular area of the chromosome, leading to a fine, but integral, tuning of the genes involved in the same pathway. That's why concepts such as regulons (genes that are usually geographically scattered but under the control of the same regulatory factor), who were initially described with a 2D vision of the bacterial chromosomes, could be specified with the incorporation of new researches. Theories behind these concepts focused on protein-protein interactions after translation, which occurs at the same time as transcription in bacteria. Indeed, products of gene-coding-protein are synthesized near their gene and a pairing of genes can results in an increasing probability for the two proteins to interact with each others '''[Fig.6]''' (Dorman 2013).
[[File:T--Paris_Saclay--fig7.png|650px|center|]]
[[File:T--Paris_Saclay--fig7.png|650px|center|]]
Line 96:
Line 96:
When the chromosome is represented in a one‐dimensional, linear form, the three genetic loci are separated by large distances in space. However, when the chromosome is reorganized as a solenoid (left) or as a plectoneme (right), the periodicity of these structures brings the three genes close together, between the regulatory gene and its two target operons. Moreover, the products of the A and B operons are produced in close proximity, favouring their interaction.»</center>
When the chromosome is represented in a one‐dimensional, linear form, the three genetic loci are separated by large distances in space. However, when the chromosome is reorganized as a solenoid (left) or as a plectoneme (right), the periodicity of these structures brings the three genes close together, between the regulatory gene and its two target operons. Moreover, the products of the A and B operons are produced in close proximity, favouring their interaction.»</center>
−
In the same way a single sigma factor, specific of a group of genes, could be recruited from a promoter to another easily because of the DNA topology. Thus, gene pair associations could provide the cell with another level of regulation of transcription. These associations would not only be significant for protein-protein interaction after translation but also be significant to enhance or to inhibit transcriptional initiation.
+
+
In the same way a single sigma factor, specific of a group of genes, could be recruited from a promoter to another easily because of the DNA topology. Thus, gene pair associations could provide the cell with another level of regulation of transcription. These genes associations could not only be significant for protein-protein interactions after translation but could also be significant to enhance or to inhibit transcription initiation.
<center>'''Figure 7''': Gene pairs and transcriptional regulation.</center>
−
+
<center>a. Binding of a sigma factor on gene A's promoter. b. Recruitment of the other parts of the RNA polymerase (red and yellow) on the sigma factor. c. Gene A's transcription begins, producing a RNA (orange) molecule. The sigma factor is released and binds an other close promoter on a pair gene, allowing the formation of an active RNA polymerase. d. Termination of gene A's transcription, an entire RNA molecule is released. Beginning of gene B's transcription, producing a RNA (dark green) molecule. The sigma factor is released. </center>
Bondos, S.E., Swint-Kruse, L., and Matthews, K.S. (2015). Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins. Journal of Biological Chemistry 290, 24669–24677.
Browning, D.F., and Busby, S.J.W. (2004). The regulation of bacterial transcription initiation. Nature Reviews Microbiology 2, 57–65.
Browning, D.F., and Busby, S.J.W. (2004). The regulation of bacterial transcription initiation. Nature Reviews Microbiology 2, 57–65.
Line 119:
Line 122:
Esvelt, K.M., Mali, P., Braff, J.L., Moosburner, M., Yaung, S.J., and Church, G.M. (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods 10, 1116–1121.
Esvelt, K.M., Mali, P., Braff, J.L., Moosburner, M., Yaung, S.J., and Church, G.M. (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods 10, 1116–1121.
+
+
Friedman, L.J., Mumm, J.P., and Gelles, J. (2013). RNA polymerase approaches its promoter without long-range sliding along DNA. Proceedings of the National Academy of Sciences 110, 9740–9745.
+
+
Haugen, S.P., Ross, W., and Gourse, R.L. (2008). Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nature Reviews Microbiology 6, 507–519.
Ishihama, A. (2000). Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54, 499–518.
Ishihama, A. (2000). Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54, 499–518.
Line 135:
Line 142:
Wright, M.A., Kharchenko, P., Church, G.M., and Segrè, D. (2007). Chromosomal periodicity of evolutionarily conserved gene pairs. Proceedings of the National Academy of Sciences 104, 10559–10564.
Wright, M.A., Kharchenko, P., Church, G.M., and Segrè, D. (2007). Chromosomal periodicity of evolutionarily conserved gene pairs. Proceedings of the National Academy of Sciences 104, 10559–10564.