Difference between revisions of "Team:Cardiff Wales/Description"

m (svg scaling)
 
(87 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
<html>
 
<html>
 +
 +
<head>
  
 
<style>
 
<style>
  
    hr{width:80%;}
+
    #bodyContent h2{
    td{border:solid;}
+
      margin-bottom:0;
    table {border-collapse: collapse;}
+
}
    div{
+
        padding:20px 0px 0px 0px;
+
        clear:both;}
+
  
    #content{
+
    #parent{
        border: 1px solid #ddd;
+
          padding: 0;
        border-radius: 4px;
+
          margin: 0;
        padding: 5px;}
+
          display: -webkit-box;
 +
          display: -moz-box;
 +
          display: -ms-flexbox
 +
          display: -webkit-flex;
 +
          display:flex;
 +
          -webkit-flex-flow: row wrap
 +
          flex-flow: row wrap;
 +
          justify-content: space-between;
 +
          margin-bottom: 20px;
 +
}
  
    #placeholder {
+
    #text{
    border: 1px solid #ddd;
+
          width:75%;
    border-radius: 4px;
+
          padding-right:15px;
    padding: 5px;
+
          padding-left:15px;
    height: 400px;
+
          padding-top:15px;
    width: 90%
+
          padding-bottom:15px;
    float: center;
+
}
    background:#ddd;}
+
  
    #parent{
+
    #image{
        padding: 0;
+
          width:25%;
        margin: 0;
+
          padding-right:15px;
        display: -webkit-box;
+
          padding-left:5px;
        display: -moz-box;
+
          padding-top:5px;
        display: -ms-flexbox
+
          padding-bottom:5px;
        display: -webkit-flex;
+
}
        display:flex;
+
        -webkit-flex-flow: row wrap
+
        flex-flow: row wrap;
+
        justify-content: space-between;
+
    }
+
  
    #text{
 
        width:75%;
 
        padding-right:15px;
 
        padding-left:15px;
 
        padding-top:15px;
 
        padding-bottom:15px;
 
    }
 
 
    #image{
 
        width:100%;
 
        padding-right:15px;
 
        padding-left:5px;
 
        padding-top:5px;
 
        padding-bottom:5px;
 
    }
 
 
        a {padding-right:0px;}
 
       
 
 
</style>
 
</style>
 +
           
 +
</head>
  
        <img width=100% src="https://static.igem.org/mediawiki/2016/f/fd/T--Cardiff_Wales--CasFind.png"/>
+
<body>
 
+
 
+
 
+
        <head>
+
            <div>
+
                <h1>Cas-Find</h1><hr>
+
            </head>
+
 
+
 
+
            <body>
+
                <div id=placeholder></div>
+
 
+
                <body>
+
                    <div>
+
                        <h2>What is Cas-Find?</h2>
+
                        <hr>
+
                        <p>Cas-Find is a point-of-care diagnostic tool using the CRISPR-Cas9 system with the potential to radically change the speed of disease diagnosis, with a particular focus on the detection of sexually transmitted infections (STI&rsquo;s).</p>
+
                    </div>
+
 
+
                    <div>
+
                        <h2>Why STI's?</h2>
+
                        <hr>
+
                        <p>Sexually transmitted infections (STIs), including those caused by the human immunodeficiency virus (HIV) types 1 and 2, remain an important focus area for global public health. This is due to the high morbidity associated with STIs, such as the sequelae of reproductive tract infections, cervical cancer, congenital syphilis, ectopic pregnancy and infertility, as well as the morbidity of HIV-related illness and death from acquired immunodeficiency syndrome (AIDS).</p>
+
                        <p>More than 30 bacterial, viral, and parasitic pathogens are transmissible sexually and constitute a group of infections referred to as sexually transmitted infections (STIs). Although some of the pathogens can be acquired through routes other than sexual transmission, epidemiologically, sexual contact is more important for their transmission from one person to another (See Table 1 for information on the main sexually transmitted pathogens).</p>
+
                        <p>http://hai-sti.roche.com/images/hai-and-sti-epidemics.png</p>
+
                    </div>
+
 
+
                    <div>
+
                        <h2>What is point-of-care testing?</h2>
+
                        <hr>
+
                        <p>Point-of-care testing (POCT): &lsquo;tests designed to be used at or near the site where the patient is located, that do not require permanent dedicated space, and that are performed outside the physical facilities of the clinical laboratories&rsquo; i.e. testing at the time and place of patient care (Santrach 2007).</p>
+
                    </div>
+
 
+
                    <div>
+
                        <h2>What are the potential benefits of point-of-care tests?</h2>
+
                        <hr>
+
                        <p>With the aim of POCT to bring the test conveniently and immediately to the patient it increases the likelihood of the physician and patient receiving results more quickly and allowing immediate clinical management decisions to be made. Rapid decision making, reduced number of outpatient clinic visits, reduced number of hospital beds required and occupied, overall ensuring the optimal use of professional time.</p>
+
                        <p>When used for diagnosis, the time required for test results to become available to guide management should be considered when choosing which test to use, since infected persons may transmit infections to others, may suffer complications of infection, or may be lost to follow-up in the interval between testing and notification of test results</p>
+
                    </div>
+
 
+
                    <div>
+
                        <h2>How do POCT&rsquo;s compare to other laboratory tests?</h2>
+
                        <hr>
+
                        <p>Laboratory-based tests, such as culture or nucleic acid amplification testing, may require special methods of specimen transport and specialized equipment and procedures for optimal performance, thus delaying the availability of results for immediate management decisions. Therefore laboratory-based diagnosis of STIs tends to be expensive in terms of equipment, reagents, infrastructure, and maintenance. Even more importantly, particularly in resource- constrained settings, the levels where most patients with STIs are processed have no laboratory facilities. (Peeling <em>et.al.</em> 2006)</p>
+
                    </div>
+
 
+
                    <div>
+
                        <h2>Where can POCT&rsquo;s have the greatest impact?</h2>
+
                        <hr>
+
                        <p>In countries with a high burden of sexually transmitted infections (STIs), where laboratory services for STIs are either not available or limited services are available and patients may not be able to physically access or to pay for these services.</p>
+
                        <p>Currently in many high risk 3<sup>rd</sup> world countries the World Health Organisation (WHO) recommends the use of syndromic management where patients are treated for all the major causes of a particular syndrome. Syndromic management of STIs works well for urethral discharge, pelvic pain, and genital ulcer disease, but evaluations of the WHO flowcharts have shown that the algorithm for vaginal discharge lacks both sensitivity and specificity for the identification of women with <em>Chlamydia trachomatis </em>and <em>Neisseria gonorrhoeae </em>infection. Simple, affordable, rapid tests that can be performed at the point-of-care (POC) and enable treatment and case management decision to be made are urgently needed for these infections (Unemo 2013). Simple rapid POC tests are needed not only to increase the specificity of syndromic management, and reduce over-treatment of genital gonococcal and chlamydial infections but also to screen for asymptomatic STIs. A mathematical model estimated that a test for syphilis that requires no laboratory infrastructure could save more than 201,000 lives and avert 215,000 stillbirths per year worldwide. A similar test could save approximately 4 million disability- adjusted life years (DALYs), avert more than 16.5 million incident gonorrhoea and chlamydial infections and prevent more than 212,000 HIV infections per year (Unemo 2013).</p>
+
                    </div>
+
 
+
                    <div>
+
                        <h2>What makes a good POCT?</h2>
+
                        <div style=border:solid;>
+
                            <h3>The ideal rapid test - ASSURED criteria </h3>
+
 
+
                            <article style=border-top:solid;>
+
                                <p>A = Affordable</p>
+
                                <p>S = Sensitive</p>
+
                                <p>S = Specific</p>
+
                                <p>U = User-friendly (simple to perform in a few steps with minimal training)</p>
+
                                <p>R = Robust and rapid (can be stored at room temperature and results available in &lt;30 minutes)</p>
+
                                <p>E = Equipment-free or minimal equipment that can be solar- or battery-powered</p>
+
                            </article>
+
                        </div>
+
 
+
                        <div>
+
                            <h2>Are there any current POCT tests? </h2>
+
                            <hr>
+
                            <p>Yes! Many are in current circulation, some examples being:</p>
+
                            <ul>
+
                                <li>Glucose</li>
+
                                <li>Blood gas analysis/electrolytes</li>
+
                                <li>Activated clotting time for high dose heparin monitoring</li>
+
                                <li>Urine dipsticks, including pregnancy</li>
+
                                <li>Occult blood</li>
+
                                <li>Haemoglobin</li>
+
                                <li>Rapid strep</li>
+
                            </ul>
+
 
+
                            <p>Current Principles of rapid point-of-care test technologies for STI&rsquo;s:</p>
+
                            <ul>
+
                                <li>Agglutination reactions to detect antigen or antibody</li>
+
                                <li>Immunochromatographic tests (ICT&rsquo;s)</li>
+
                                <li>Microfluidic assays</li>
+
                                <li>Rapid molecular assays
+
                                    <ul>
+
                                        <li>Recombinase polymerase amplification (RPA)</li>
+
                                        <li>Helicase dependent amplification (HDA)</li>
+
                                        <li>Cross priming amplification (CPA)</li>
+
                                        <li>Rolling circle amplification (RCA)</li>
+
                                    </ul>
+
                                </li>
+
                            </ul>
+
                        </div>
+
 
+
 
+
                        <div>
+
                            <h2>Can I have an example of how Cas-Find would be useful? </h2>
+
                            <hr>
+
                            <p>Lets take one of the most common sexually transmitted infections in the UK affecting on average 200,000 people each year, chlamydia (PHE 2015). Currently to test for this infection you take either a urine sample or swab to determine if the chlamydia bacteria (Chlamydia trachomatis) is present. Analysing the samples involves using nucleic acid amplification tests (NAAT) such as PCR or by growing a chlamydia culture. Cultures incur high costs, have varying sensitivity and limitations for widespread screening whilst both methods are laborious and often time consuming. Cas-Find aims to reduce the time to disease detection. Using the CRISPR-Cas9 system specific sequences on the suspect bacteria can be immediately detected, emitting a measureable fluorescence if present. This point-of-care nature of our project can significantly advantage those where lab access if limited, expensive and the speed of diagnosis is crucial in making the appropriate clinical decisions.</p>
+
  
                            <div>
+
    <img style=width:100%; src="https://static.igem.org/mediawiki/2016/f/fd/T--Cardiff_Wales--CasFind.png"/>
                                <h2>Table 1: Main sexually transmitted pathogens and the diseases they cause </h2>
+
             
                                <table>
+
<div><h2>'Cas-Find' is a novel bioluminescent system for point-of-care diagnostic testing.</h2><hr></div>
                                    <tbody>
+
                                        <tr>
+
                                            <td>
+
                                                <p><strong>Pathogen </strong></p>
+
                                            </td>
+
                                            <td>
+
                                                <p><strong>Clinical manifestations and other associated diseases </strong></p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td colspan="2" style=border:double solid;>
+
                                                <p><strong>Bacterial infections </strong></p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Neisseria gonorrhoeae </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>GONORRHOEA<br /> <strong>Men: </strong>urethral discharge (urethritis), epididymitis, orchitis, infertility<br /> <strong>Women: </strong>cervicitis, endometritis, salpingitis, pelvic inflammatory disease, infertility, preterm rupture of membranes, perihepatitis; commonly asymptomatic</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Chlamydia trachomatis </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>CHLAMYDIAL INFECTION<br /> <strong>Men: </strong>urethral discharge (urethritis), epididymitis, orchitis, infertility<br /> <strong>Women: </strong>cervicitis, endometritis, salpingitis, pelvic inflammatory disease, infertility, preterm rupture of membranes, perihepatitis; commonly asymptomatic <strong>Both sexes: </strong>proctitis, pharyngitis, Reiter&rsquo;s syndrome<br /> <strong>Neonates: </strong>conjunctivitis, pneumonia</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Chlamydia trachomatis </em></p>
+
                                                <p>(serovars L1&ndash;L3)</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>LYMPHOGRANULOMA VENEREUM<br /> <strong>Both sexes: </strong>ulcer, inguinal swelling (bubo), proctitis</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Treponema pallidum </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>SYPHILIS<br /> <strong>Both sexes: </strong>primary ulcer (chancre) with local adenopathy, skin rashes, condylomata lata; bone, cardiovascular, and neurological damage <strong>Women: </strong>pregnancy wastage (abortion, stillbirth), premature delivery <strong>Neonates: </strong>stillbirth, congenital syphilis</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Haemophilus ducreyi </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>CHANCROID<br /> <strong>Both sexes: </strong>painful genital ulcers; may be accompanied by bubo</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Klebsiella (Calymmatobacterium) granulomatis </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>DONOVANOSIS (GRANULOMA INGUINALE)<br /> <strong>Both sexes: </strong>nodular swellings and ulcerative lesions of the inguinal and anogenital areas<br /> <strong>Men: </strong>urethral discharge (nongonococcal urethritis)<br /> <strong>Women: </strong>cervicitis, endometritis, probably pelvic inflammatory disease</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Mycoplasma genitalium </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p><strong>Men: </strong>urethral discharge (nongonococcal urethritis)<br /> <strong>Women: </strong>cervicitis, endometritis, probably pelvic inflammatory disease</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td colspan="2" style=border:double solid;>
+
                                                <p><strong>Viral infections </strong></p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Human immunodeficiency virus (HIV)</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>ACQUIRED IMMUNODEFICIENCY SYNDROME (AIDS) <strong>Both sexes: </strong>HIV-related disease, AIDS</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Herpes simplex virus type 2 Herpes simplex virus type 1 (less common)</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>GENITAL HERPES<br /> <strong>Both sexes: </strong>anogenital vesicular lesions and ulcerations <strong>Neonates: </strong>neonatal herpes (often fatal)</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Human papillomavirus</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>GENITAL WARTS<br /> <strong>Men: </strong>penile and anal warts; carcinoma of the penis<br /> <strong>Women: </strong>vulval, anal, and cervical warts, cervical carcinoma, vulval carcinoma, anal carcinoma<br /> <strong>Neonates: </strong>laryngeal papilloma</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Hepatitis B virus</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>VIRAL HEPATITIS<br /> <strong>Both sexes: </strong>acute hepatitis, liver cirrhosis, liver cancer</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Cytomegalovirus</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>CYTOMEGALOVIRUS INFECTION<br /> <strong>Both sexes: </strong>subclinical or nonspecific fever, diffuse lymph node swelling, liver disease, etc.</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Molluscum contagiosum virus</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>MOLLUSCUM CONTAGIOSUM<br /> <strong>Both sexes: </strong>genital or generalized umbilicated, firm skin nodules</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p>Kaposi sarcoma associated herpesvirus<br /> (human herpesvirus type 8)</p>
+
                                            </td>
+
                                            <td>
+
                                                <p>KAPOSI SARCOMA<br /> <strong>Both sexes: </strong>aggressive type of cancer in immunosuppressed persons</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td colspan="2" style=border:double solid;>
+
                                                <p><strong>Protozoal infections </strong></p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Trichomonas vaginalis </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>TRICHOMONIASIS<br /> <strong>Men: </strong>urethral discharge (nongonococcal urethritis); often asymptomatic <strong>Women: </strong>vaginosis with profuse, frothy vaginal discharge; preterm birth, low-birth-weight babies<br /> <strong>Neonates: </strong>low birth weight</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td colspan="2" style=border:double solid;>
+
                                                <p><strong>Fungal infections </strong></p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Candida albicans </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>CANDIDIASIS<br /> <strong>Men: </strong>superficial infection of the glans penis<br /> <strong>Women: </strong>vulvo-vaginitis with thick curd-like vaginal discharge, vulval itching, or burning</p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td colspan="2" style=border:double solid;>
+
                                                <p><strong>Parasitic infestations </strong></p>
+
                                            </td>
+
                                        </tr>
+
                                        <tr>
+
                                            <td>
+
                                                <p><em>Phthirus pubis Sarcoptes scabiei </em></p>
+
                                            </td>
+
                                            <td>
+
                                                <p>PUBIC LICE INFESTATION SCABIES</p>
+
                                            </td>
+
                                        </tr>
+
                                    </tbody>
+
                                </table>
+
  
 +
<div id=parent>
  
                                <h2>References: </h2>
+
<div id=text> <p>Sexually transmitted infections (STI) represent an important issue for global Public health, due to their high-morbidity and prevalence. Laboratory-based tests for STI require specalised infrastructure, equipment and procedures for optimal performance <sup><a href="">[1]</a></sup>. As such the utilisation of these tests is generally expensive and time consuming, limiting the availability of results for immediate use in management decisions and potentially impacting on patient prognosis. In addition the majority of STI testing is conducted in resource-constrained environments, where such infrastructure and facilities are unavailable <sup><a href="">[2]</a></sup>.'Cas-Find' exploits CRISPR/Cas9 to potentially achieve point-of-care diagnosis alleviating some of the global health burden associated with these diseases.</p><br>
                                <hr>
+
                                <p>Peeling, R.W., Holmes, K.K., Mabey, D. (2006) Rapid tests for sexually transmitted infections (STI&rsquo;s): the way forward. <em>Sex Transm Infect</em>. <strong>82</strong>:1-6.</p>
+
  
                                <p>Public Health England. (2015) Sexually transmitted infections and chlamydia screening in England. <em>Infection Report. </em><strong>10</strong>:22</p>
 
  
                                <p>Santrach, P.J. (2007) Current and Future Applications of Point of Care Testing. Mayo Clinic. Access online at: <a href="http://wwwn.cdc.gov/cliac/pdf/addenda/cliac0207/addendumf.pdf">http://wwwn.cdc.gov/cliac/pdf/addenda/cliac0207/addendumf.pdf</a></p>
+
<p><b>CRISPR/Cas9 achieves sequence specific interrogation.</b><br>Most bacteria and archaea possess RNA-mediated adaptive defence mechanisms composed of clustered regularly interspaced short palindromic repeats (CRIPSR) and CRISPR-associated proteins (Cas). Initially exogenous DNA sequences are recognised and incorporated into the bacterial or archaeal genome at the CRISPR loci, transcription through which produces CRISPR RNA (crRNA). An additional trans-activating RNA (tracrRNA) is required for interference, and is partially complementary to this crRNA. In <i>Streptococcus pyogenes</i> this forms a crRNA:tracrRNA <sup><a href="">[4]</a></sup> duplex which recruits the endonuclease Cas9, and collectively these molecules achieve sequence specific DNA interrogation and cleavage. This is summarised in Figure 1, demonstrating the sequential acquisition of exogenous DNA, RNA processing and interference. In synthetic applications a single guide RNA (sgRNA) construct fulfills the role of the crRNA:tracrRNA duplex. This sgRNA consists of a 20 nucleotide sequence complementary to the target, a 42 nucleotide Cas9 binding RNA structure, and a 40 nucleotide transcription terminator <sup><a href="">[5]</a></sup>. 'Cas-Find' utilises the capability of CRISPR/Cas9 to achieve sequence specific interrogation.</p><br>
  
                                <p>Unemo M. (2013) Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. <em>WHO. &nbsp;</em></p>
+
<p><b>The reconstitution of luciferase activity constitutes a positive signal.</b><br>Luciferases catalyse bioluminescent reactions using ATP in the presence of molecular oxygen (O<sub>2</sub>) and luciferin (LH<sub>2</sub>), with <i>in vivo</i> and <i>in vitro</i> applications in imaging and detection. Wild-type luciferases are highly sensitive to pH and are thermolabile, undergoing inactivation and bathochromic shift at 25<sup>o</sup>C <sup><a href="">[7]</a></sup>. We fused the C- and N- terminal fragments of a thermostable pH-tolerant <i>Photinus pyralis</i> luciferase mutant to a dCas9 isoform optimized for expression in <i>E. coli</i>. dCas9 lacks catalytic activity, and as such targeted sequences do not undergo cleavage. sgRNA constructs target these chimeric proteins to adjacent sequences, resulting in the reconstitution of luciferase activity and bioluminescence in the prescence of luciferin. The reconstitution of bioluminesce significantly greater than background activity constitutes the positive signal for pathogen detection. The mechanism of this 'Cas-Find' system is demonstrated in Fig 2.</p><br>
  
                                <a name="Design"></a>
+
<p><b>'Cas-Find' could provide adaptable, specific point-of-care diagnosis.</b><br>All constructs were expressed under the T7 promoter and the control of the <i>lac</i> operator. dCas9 chimeric constructs were expressed in both pET16b and pCOLADuet expression vectors (see Fig 2). sgRNA constructs targeted to the 16S rRNA locus of <i>E. coli</i> were expressed in MSCS2 of pCOLADuet, in addition to the pSBC13 expression vector. The design of sgRNA constructs is discussed in more detail below. With further characterisation 'Cas-Find' thus presents a potential novel solution to STI diagnosis, especially where resources are constrained. The adaptable design of sgRNA constructs ensures that the 'Cas-Find' system can be designed to detect specific pathogens, and the requirement for the binding of two sgRNA constructs with a defined distance between them imparts high specificity. Bioluminescence can be detected using low cost and minimal equipment, and could be conducted rapidly at the point-of-care, potentially alleviating some of the global health burden associated with STI.</p><br>
                                <div><h1>Design</h1></div>
+
                                <div><h2>'Cas-Find' is a novel bioluminescent system for point-of-care diagnostic testing.</h2><hr></div>
+
  
                                <div id=parent>
+
</div>
  
                                    <div style=order:1; id=text>
+
<div style:flex-direction:column;>     
 +
<div><img src="https://static.igem.org/mediawiki/2016/6/6d/T--Cardiff_Wales--CRISPR.svg" /><p><b>Fig 1. <i>S.pyogenes</i> CRISPR/Cas9.</b></p><br><br><br><br><br></div>
  
                                        <p>Laboratory-based tests, such as nucleic acid amplification (NAA) or culture, require special methods of specimen transport, alongside specalised equipment and procedures for optimal performance <sup><a href="">[2]</a></sup>. As such the utilisation of laboratory-based tests is generally expensive in terms of equipment, reagents, infrastructure and maintenance. This limits the availability of results for immediate use in management decisions, potentially impacting on patient prognosis. In addition the majority of STI testing is conducted in resource-constrained environments, where such laboratory facilities are unavailable <sup><a href="">[3]</a></sup>.
+
<div><img src="https://static.igem.org/mediawiki/2016/8/87/T--Cardiff_Wales--Cas-Find_Summary.svg" /><p><b>Fig 2. 'Cas-Find'</b></p><br><br></div>
  
 +
<div><video width=400px controls> <source src="https://static.igem.org/mediawiki/2016/c/c6/T--Cardiff_Wales--vid1.mp4" type="video/mp4"> Your browser does not support HTML5 video.</video><p><b>Westminster Presentation.</b></p></div>
  
                                        </p>
+
</div>  
                                    </div>
+
  
                                    <div align="right" id=image >
+
</div>
                                        <img id=image src="https://static.igem.org/mediawiki/2016/8/87/T--Cardiff_Wales--Cas-Find_Summary.svg" />
+
           
                                        <p><b>Fig 1. Summary of Cas-Find project</b></p>
+
                                    </div>
+
                                </div>
+
  
 +
<h2>Proof of concept <i>in vitro</i> system targeted to the <i>Escherichia coli</i> 16S rRNA locus.</h2><hr>
  
 +
<div id=parent>
  
                                <div><h2>Proof of concept <i>in vitro</i> system targeted to <i>Escherichia coli</i> 16S rRNA.</h2><hr></div>
+
<div style=order:2; id=text><p>Dr. Daniel Pass developed a program to assist in designing sgRNA constructs for non-standard genomic regions and species, to the specifications required for this system. Here, we targeted the  <i>E. coli</i> 16S rRNA locus in order to facilitate proof-of-concept testing of our in vitro system. The design of these constructs was achieved using a <a href="http://github.com/passdan/scriptdrop/blob/master/cas9_targeter.py">Python script</a> developed to find appropriate paired regions from a FASTA formatted genomic DNA region for paired target sequences using <a href="http://www.clontech.com/GB/Products/Genome_Editing/CRISPR_Cas9/Resources/Designing_sgRNA">guidelines</a> from Takara Bio USA alongside additional sources.The script initially identifies proto-spacer adjacent motif (PAM) sequences (5'-NGG-3') in this FASTA sequence in forward and reverse. The sgRNA sequence is complementary to the 20 nucleotides upstream of the PAM sequence, after accounting for other enhancement features. Viable pairs within a defined range of each other are selected and passed to BLASTn to test for simple alignment against a reference dataset. This would include the remainder of the species genome, and also multiple cross-reactive species. The output is a FASTA file of potential probe pairs, a table.txt file of the same information in a graphical representation, and the results of the blast search, to aid in choosing probes which do not demonstrate cross-reactivity </p>
  
                                <div id=parent>
+
<p>We designed one forward (F1) and three reverse (R1, R2 and R3) sgRNA constructs targeted to the <i>E. Coli</i> 16S rRNA locus using this program. Differing coexpression conditions could thus facilitate the characterization of background reconstitution at differing genomic distances. This builds on similar experimentation by <a href="https://2013.igem.org/Team:MIT/Venus">MIT</a> in 2013, and could contribute to future work with similar split reporter systems. This locus was selected due to its high copy number, promoting a strong signal during initial testing.</div>
  
                                    <div style=order:2; id=text>
+
<div style:flex-direction:column;>  
  
                                        <p>Dr. Daniel Pass designed sgRNA constructs targeted to the <i>E. coli</i> 16S rRNA locus in order to facilitate proof-of-concept testing of our <i>in vitro</i> system. The design of these constructs was achieved using a Python <a href="http://github.com/passdan/scriptdrop/blob/master/cas9_targeter.py">script</a> developed by Dr. Pass to test FASTA formatted genomic DNA for paired target sequences using <a href="http://www.clontech.com/GB/Products/Genome_Editing/CRISPR_Cas9/Resources/Designing_sgRNA"> guidelines</a> from Takara Bio USA alongside additional sources. This script initially identifies a proto-spacer adjacent motif (PAM) sequence (5'-NGG-3') in this FASTA sequence. The sgRNA sequence is complementary to the 20 nucleotides upstream of the PAM sequence. This is passed to BLASTn to test for simple alignment against the reference dataset, which could include the remainder of the species genome, or multiple cross-reactive species. The output is a FASTA table of potential probes, and a table.txt file of the same information in a graphical representation.</p>
+
<div><img id=image; src="https://static.igem.org/mediawiki/2016/f/f0/T--Cardiff_Wales--Cas-Find_sgRNA.svg"/><p><b>Fig 3. sgRNA distance characterisation. </b></p></div></div></div>
  
                                    </div>
 
  
                                    <div id=image>
+
<div style=width:100%;> <h2>Bibliography</h2><hr>
                                        <img id=image src="https://static.igem.org/mediawiki/2016/f/f0/T--Cardiff_Wales--Cas-Find_sgRNA.svg"/>
+
                                        <p><b>Fig 2. Summary of sgRNA design</b></p>
+
                                    </div>
+
                                </div>
+
  
                                <h2>Title</h2><hr>
+
<div><p><a name="1"> <sup>1</sup> </a> - Peeling, R.W., Holmes, K.K., Mabey, D. (2006) Rapid tests for sexually transmitted infections (STI's): the way forward.<i>Sexually Transmitted Infections</i>.<b>82:</b>1-6.</p></div>
                               
+
                                <div id=parent>
+
                                    <div style=order:2; id=text>
+
                                        <p> Islo lorem etc</p>
+
                                    </div>
+
                                   
+
                                    <div id=image>
+
                                        <img id=image src="https://static.igem.org/mediawiki/2016/8/86/T--Cardiff_Wales--Cas-Find_Characterisation.svg"/>
+
                                        <p><b>Fig 3. Summary of Characterisation</b></p>
+
                                    </div>
+
                               
+
                                </div>
+
  
                                <div>
+
<div><p><a name="2"> <sup>2</sup></a> - Santrach, P.J. (2007) Current and Future Applications of Point of Care Testing. Mayo Clinic. [Online] Available at: http://wwwn.cdc.gov/cliac/pdf/addenda/cliac0207/addendumf.pdf [Accessed: 18 October 2016] </p></div>  
  
                                    <!-- <div align=center>
+
<div><p><a name="3"> <sup>3</sup></a> - Unemo M. (2013) Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. <em>WHO. &nbsp;</em></p></div>
                                    <video width=400px controls>
+
                                    <source src="https://static.igem.org/mediawiki/2016/c/c6/T--Cardiff_Wales--vid1.mp4" type="video/mp4">
+
                                    Your browser does not support HTML5 video.
+
                                </video>
+
                                <p><i>Westminster Presentation, by Andrew Brimer & Christian Donohoe</i></p>
+
                            </div> -->
+
  
 +
<div><p><a name="4"> <sup>4</sup></a> - Jinek, M., Chylinsji, K., Fonfara, I., Hauer, M. Doudna, J., Charpentier, E. (2012) A Programmable Dual-RNA_Guided DNA Endonuclease in Adaptive Bacterial Immunitity. <i>Science.</i><b>337:</b>816-821.</p></div>
  
 +
<div><p><a name="5"><sup>5</sup></a> - Larson, M., Gilbert, L.,Wang, X., Lim, W., Weissman, J., Qi, L. (2013) 
 +
CRISPR interference (CRISPRi) for sequence-specific control of gene expression. <i>Nature Protocols.</i><b>8:</b>2180-2196.</p></div>
  
                        </body>
+
<div><p><a name="6"><sup>6</sup></a> - Jathoul, A., Law, E., Gandelman, O., Pule, M., Tisi, L., Murray, J. (2012) Development of a pH-tolerant Thermostable <i>Photinus pyralis</i> Luciferase for Brighter <i>In Vivo</i> Imaging. <i>Bioluminescence - Recent Advances in Oceanic Measurements and Laboratory Applications.</p></div>
                        </html>
+
  
                        {{Team:Cardiff Wales/Footer}}
+
</body>
 +
 +
</html>

Latest revision as of 02:45, 20 October 2016

'Cas-Find' is a novel bioluminescent system for point-of-care diagnostic testing.


Sexually transmitted infections (STI) represent an important issue for global Public health, due to their high-morbidity and prevalence. Laboratory-based tests for STI require specalised infrastructure, equipment and procedures for optimal performance [1]. As such the utilisation of these tests is generally expensive and time consuming, limiting the availability of results for immediate use in management decisions and potentially impacting on patient prognosis. In addition the majority of STI testing is conducted in resource-constrained environments, where such infrastructure and facilities are unavailable [2].'Cas-Find' exploits CRISPR/Cas9 to potentially achieve point-of-care diagnosis alleviating some of the global health burden associated with these diseases.


CRISPR/Cas9 achieves sequence specific interrogation.
Most bacteria and archaea possess RNA-mediated adaptive defence mechanisms composed of clustered regularly interspaced short palindromic repeats (CRIPSR) and CRISPR-associated proteins (Cas). Initially exogenous DNA sequences are recognised and incorporated into the bacterial or archaeal genome at the CRISPR loci, transcription through which produces CRISPR RNA (crRNA). An additional trans-activating RNA (tracrRNA) is required for interference, and is partially complementary to this crRNA. In Streptococcus pyogenes this forms a crRNA:tracrRNA [4] duplex which recruits the endonuclease Cas9, and collectively these molecules achieve sequence specific DNA interrogation and cleavage. This is summarised in Figure 1, demonstrating the sequential acquisition of exogenous DNA, RNA processing and interference. In synthetic applications a single guide RNA (sgRNA) construct fulfills the role of the crRNA:tracrRNA duplex. This sgRNA consists of a 20 nucleotide sequence complementary to the target, a 42 nucleotide Cas9 binding RNA structure, and a 40 nucleotide transcription terminator [5]. 'Cas-Find' utilises the capability of CRISPR/Cas9 to achieve sequence specific interrogation.


The reconstitution of luciferase activity constitutes a positive signal.
Luciferases catalyse bioluminescent reactions using ATP in the presence of molecular oxygen (O2) and luciferin (LH2), with in vivo and in vitro applications in imaging and detection. Wild-type luciferases are highly sensitive to pH and are thermolabile, undergoing inactivation and bathochromic shift at 25oC [7]. We fused the C- and N- terminal fragments of a thermostable pH-tolerant Photinus pyralis luciferase mutant to a dCas9 isoform optimized for expression in E. coli. dCas9 lacks catalytic activity, and as such targeted sequences do not undergo cleavage. sgRNA constructs target these chimeric proteins to adjacent sequences, resulting in the reconstitution of luciferase activity and bioluminescence in the prescence of luciferin. The reconstitution of bioluminesce significantly greater than background activity constitutes the positive signal for pathogen detection. The mechanism of this 'Cas-Find' system is demonstrated in Fig 2.


'Cas-Find' could provide adaptable, specific point-of-care diagnosis.
All constructs were expressed under the T7 promoter and the control of the lac operator. dCas9 chimeric constructs were expressed in both pET16b and pCOLADuet expression vectors (see Fig 2). sgRNA constructs targeted to the 16S rRNA locus of E. coli were expressed in MSCS2 of pCOLADuet, in addition to the pSBC13 expression vector. The design of sgRNA constructs is discussed in more detail below. With further characterisation 'Cas-Find' thus presents a potential novel solution to STI diagnosis, especially where resources are constrained. The adaptable design of sgRNA constructs ensures that the 'Cas-Find' system can be designed to detect specific pathogens, and the requirement for the binding of two sgRNA constructs with a defined distance between them imparts high specificity. Bioluminescence can be detected using low cost and minimal equipment, and could be conducted rapidly at the point-of-care, potentially alleviating some of the global health burden associated with STI.


Fig 1. S.pyogenes CRISPR/Cas9.






Fig 2. 'Cas-Find'



Westminster Presentation.

Proof of concept in vitro system targeted to the Escherichia coli 16S rRNA locus.


Dr. Daniel Pass developed a program to assist in designing sgRNA constructs for non-standard genomic regions and species, to the specifications required for this system. Here, we targeted the  E. coli 16S rRNA locus in order to facilitate proof-of-concept testing of our in vitro system. The design of these constructs was achieved using a Python script developed to find appropriate paired regions from a FASTA formatted genomic DNA region for paired target sequences using guidelines from Takara Bio USA alongside additional sources.The script initially identifies proto-spacer adjacent motif (PAM) sequences (5'-NGG-3') in this FASTA sequence in forward and reverse. The sgRNA sequence is complementary to the 20 nucleotides upstream of the PAM sequence, after accounting for other enhancement features. Viable pairs within a defined range of each other are selected and passed to BLASTn to test for simple alignment against a reference dataset. This would include the remainder of the species genome, and also multiple cross-reactive species. The output is a FASTA file of potential probe pairs, a table.txt file of the same information in a graphical representation, and the results of the blast search, to aid in choosing probes which do not demonstrate cross-reactivity

We designed one forward (F1) and three reverse (R1, R2 and R3) sgRNA constructs targeted to the E. Coli 16S rRNA locus using this program. Differing coexpression conditions could thus facilitate the characterization of background reconstitution at differing genomic distances. This builds on similar experimentation by MIT in 2013, and could contribute to future work with similar split reporter systems. This locus was selected due to its high copy number, promoting a strong signal during initial testing.

Fig 3. sgRNA distance characterisation.

Bibliography


1 - Peeling, R.W., Holmes, K.K., Mabey, D. (2006) Rapid tests for sexually transmitted infections (STI's): the way forward.Sexually Transmitted Infections.82:1-6.

2 - Santrach, P.J. (2007) Current and Future Applications of Point of Care Testing. Mayo Clinic. [Online] Available at: http://wwwn.cdc.gov/cliac/pdf/addenda/cliac0207/addendumf.pdf [Accessed: 18 October 2016]

3 - Unemo M. (2013) Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. WHO.  

4 - Jinek, M., Chylinsji, K., Fonfara, I., Hauer, M. Doudna, J., Charpentier, E. (2012) A Programmable Dual-RNA_Guided DNA Endonuclease in Adaptive Bacterial Immunitity. Science.337:816-821.

5 - Larson, M., Gilbert, L.,Wang, X., Lim, W., Weissman, J., Qi, L. (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols.8:2180-2196.

6 - Jathoul, A., Law, E., Gandelman, O., Pule, M., Tisi, L., Murray, J. (2012) Development of a pH-tolerant Thermostable Photinus pyralis Luciferase for Brighter In Vivo Imaging. Bioluminescence - Recent Advances in Oceanic Measurements and Laboratory Applications.