Difference between revisions of "Team:BostonU HW/Demonstrate"

 
(9 intermediate revisions by 3 users not shown)
Line 196: Line 196:
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Demonstrate">Demonstration</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Demonstrate">Demonstration</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Proof">Proof</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Proof">Proof</a>
                   <a href="https://2016.igem.org/Team:BostonU_HW/Design">Documentation</a>
+
                   <a href="https://2016.igem.org/Team:BostonU_HW/Design">Design</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Parts">Parts</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Parts">Parts</a>
 
             </div>
 
             </div>
Line 213: Line 213:
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/HP/Silver">Silver</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/HP/Silver">Silver</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/HP/Gold">Gold</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/HP/Gold">Gold</a>
                   <a href="https://2016.igem.org/Team:BostonU_HW/Integrated_Practices">Integrated Practices</a>
+
                    
                  <a href="https://2016.igem.org/Team:BostonU_HW/Engagement">Engagement</a>
+
 
 
             </div>
 
             </div>
 
         </li>
 
         </li>
Line 220: Line 220:
 
             <a href="#" class="dropbtn">AWARDS</a>
 
             <a href="#" class="dropbtn">AWARDS</a>
 
             <div class="dropdown-content">
 
             <div class="dropdown-content">
                   <a href="https://2016.igem.org/Team:BostonU_HW/Hardware">Hardware</a>
+
                   <a href="https://2016.igem.org/Team:BostonU_HW/Integrated_Practices">Integrated Practices</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Software">Software</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Software">Software</a>
 
             </div>
 
             </div>
Line 231: Line 231:
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Silver">Silver</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Silver">Silver</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Gold">Gold</a>
 
                   <a href="https://2016.igem.org/Team:BostonU_HW/Gold">Gold</a>
                   <a href="https://2016.igem.org/Team:BostonU_HW/AboveAndBeyond">Above & Beyond</a>
+
                    
 
             </div>
 
             </div>
 
         </li>
 
         </li>
Line 378: Line 378:
 
<div class="row" style="padding-top:50px; padding-bottom:50px;">
 
<div class="row" style="padding-top:50px; padding-bottom:50px;">
 
   <div class="col-md-1"></div>
 
   <div class="col-md-1"></div>
   <div class="col-md-10" style="font-size: 3em; line-height: 130%;">Come see all that Neptune has to offer at live demonstration at our booth. </div>
+
   <div class="col-md-10" style="font-size: 3em; line-height: 130%;">Come see all that Neptune has to offer at a live demonstration at our booth. </div>
 
   <div class="col-md-1"></div>
 
   <div class="col-md-1"></div>
 
</div>
 
</div>
Line 391: Line 391:
 
         <br><br>
 
         <br><br>
 
         <div>
 
         <div>
           Below you can find a video of a step by step walkthrough of the Neptune toolchain. We take an example case, Dr. Ali, who wants to create a simple inducer chip, and show how he can specify, design, build, and control his microfluidic device through Neptune’s system:
+
           Below you can find a video of a step by step walkthrough of the Neptune toolchain. We take an example case, Dr. Ali, who wants to create a device to characterize how a genetic part responds to various levels of inducer. We show how he can specify, design, build, and control his microfluidic device through Neptune’s system:
 
         </div>
 
         </div>
 
         <br><br>
 
         <br><br>
Line 401: Line 401:
 
             <div class="row">
 
             <div class="row">
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
           <div class="col-md-2">Step 1 |</div>
+
           <div class="col-md-2" style="padding-right:0;">Step 1</div>
           <div class="col-md-8" style="margin-left:0;">Create a Project!</div>
+
           <div class="col-md-8" style="padding-left:0;">Create a Project!</div>
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
 
         </div>
 
         </div>
Line 408: Line 408:
 
         <div class="row">
 
         <div class="row">
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
           <div class="col-md-2">Step 2 |</div>
+
           <div class="col-md-2" style="padding-right:0;">Step 2</div>
           <div class="col-md-8" style="margin-left:0;">Specify the microfluidic design in terms of liquid flow relations using a library of features provided.</div>
+
           <div class="col-md-8" style="padding-left:0;">Specify the microfluidic design in terms of liquid flow relations using a library of features provided.</div>
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
 
         </div>
 
         </div>
Line 415: Line 415:
 
         <div class="row">
 
         <div class="row">
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
           <div class="col-md-2">Step 3 |</div>
+
           <div class="col-md-2" style="padding-right:0;">Step 3</div>
           <div class="col-md-8" style="margin-left:0;">Make any parametric edits to chip features if desired in the more detailed MINT description.</div>
+
           <div class="col-md-8" style="padding-left:0;">Make any parametric edits to chip features if desired in the more detailed MINT description.</div>
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
 
         </div>
 
         </div>
Line 422: Line 422:
 
         <div class="row">
 
         <div class="row">
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
           <div class="col-md-2">Step 4 |</div>
+
           <div class="col-md-2" style="padding-right:0;">Step 4</div>
           <div class="col-md-8" style="margin-left:0;">Build and Assemble the chip and control infrastructure.</div>
+
           <div class="col-md-8" style="padding-left:0;">Build and Assemble the chip and control infrastructure.</div>
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
 
         </div>
 
         </div>
Line 429: Line 429:
 
         <div class="row">
 
         <div class="row">
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
           <div class="col-md-2">Step 5 |</div>
+
           <div class="col-md-2" style="padding-right:0;">Step 5</div>
           <div class="col-md-8" style="margin-left:0;">Control and use the microfluidic system!</div>
+
           <div class="col-md-8" style="padding-left:0;">Control and use the microfluidic system!</div>
 
           <div class="col-md-1"></div>
 
           <div class="col-md-1"></div>
 
         </div>
 
         </div>
Line 462: Line 462:
  
  
<div class="row" style="padding-top:50px; padding-bottom:50px;">
 
  <div class="col-md-1"></div>
 
  <div class="col-md-10" style="font-size: 3em; line-height: 130%; text-align: right;">Considerations for Replication | Neptune is built to be modular, accessible, parametric, and expandable.</div>
 
  <div class="col-md-1"></div>
 
</div>
 
 
<div class="row" style="padding-top:100px; padding-bottom:100px;">
 
  <div class="col-md-1"></div>
 
  <div class="col-md-10" style="background-color: white; padding-top:50px; padding-bottom:50px;">
 
 
 
    <div class="row">
 
      <div class="col-md-3">
 
      </div>
 
      <div class="col-md-9">
 
        <div style="font-size: 2em; line-height: 150%; color:#355E62;">OPEN SOURCE</div>
 
      </div>
 
    </div>
 
    <div class="row" style="padding-top:20px; padding-bottom:20px;">
 
      <div class="col-md-3">
 
        <img src="https://static.igem.org/mediawiki/2016/1/1e/T--BostonU_HW--GitHubLogo_rcwolf.png" width="80%" style="padding-left:20px">
 
      </div>
 
      <div class="col-md-9">
 
        All of our materials are Open Source. This includes our software tool Neptune, our parametric 3-D Print (STL) files for the microfluidic and hardware infrastructure, and our firmware used to control the valves and dispensers of our system. If an individual wishes to use, modify, or reinvent our software, firmware, or hardware, all of the material to do so is readily available to them to download at their convenience from our public GitHub repository. Also, any of our supporting software tools (including Cura and OpenScad), are free. Users can download any of these resources using the links below.
 
        <br><br>
 
        <a href="https://github.com/CIDARLAB/Neptune" style="padding-right:20px"> <button type="button" class="btn btn-primary" id="down">DOWNLOAD NEPTUNE</button></a>
 
        <a href="http://www.openscad.org/" style="padding-right:20px"> <button type="button" class="btn btn-primary" id="down">DOWNLOAD OPENSCAD</button></a>
 
        <a href="https://ultimaker.com/en/products/cura-software" > <button type="button" class="btn btn-primary" id="down">DOWNLOAD CURA</button></a>
 
      </div>
 
    </div>
 
 
    <br>
 
 
 
 
    <div class="row">
 
      <div class="col-md-3">
 
      </div>
 
      <div class="col-md-9">
 
        <div style="font-size: 2em; line-height: 150%; color:#355E62;">INSTRUCTIONAL RESOURCES</div>
 
      </div>
 
    </div>
 
    <div class="row" style="padding-top:20px; padding-bottom:20px;">
 
      <div class="col-md-3">
 
        <img src="https://static.igem.org/mediawiki/2016/f/f2/T--BostonU_HW--workersHat_rcwolf.png" width="90%" style="padding-left:20px">
 
      </div>
 
      <div class="col-md-9">
 
        [Priya: Build & Assembly pages]
 
      </div>
 
    </div>
 
 
    <br>
 
 
        <div class="row">
 
      <div class="col-md-3">
 
      </div>
 
      <div class="col-md-9">
 
        <div style="font-size: 2em; line-height: 150%; color:#355E62;">PARAMETRIC DESIGNS</div>
 
      </div>
 
    </div>
 
    <div class="row" style="padding-top:20px; padding-bottom:20px;">
 
      <div class="col-md-3">
 
        <img src="https://static.igem.org/mediawiki/2016/3/37/T--BostonU_HW--parametricIcon_rcwolf.png" width="90%" style="padding-left:20px">
 
      </div>
 
      <div class="col-md-9">
 
        All of our STL files used for 3-D printing hardware infrastructure are parametric. If the user decides to use a different servo than that which Neptune recommends, he or she may simply enter a few measurements into the  parameters listed at the top of the provided files and the designs will update automatically to reflect those changes.
 
        <br><br>
 
        Our software is designed to convert a mL amount to be dispensed into a PWM command to be sent to the arduino such that an even dispense rate is achieved for fluid movement through the microfluidic device. This conversion, however, is dependent on the specific servo/syringe combination the user has implemented. If the user decides to use a different servo/syringe setup than what is recommended by our system, he or she may still use our dispense conversion algorithm to control their system as it is also completely parametric.
 
        <br><br>
 
        <a href="https://github.com/CIDARLAB/iGEM2016-Hardware"> <button type="button" class="btn btn-primary">DOWNLOAD 3D PRINT FILES</button></a>
 
      </div>
 
    </div>
 
 
    <br>
 
 
    <div class="row">
 
      <div class="col-md-3">
 
      </div>
 
      <div class="col-md-9">
 
        <div style="font-size: 2em; line-height: 150%; color:#355E62;">LARGE FUNCTIONAL RANGE OF HARDWARE</div>
 
      </div>
 
    </div>
 
    <div class="row" style="padding-top:20px; padding-bottom:20px;">
 
      <div class="col-md-3">
 
        <img src="https://static.igem.org/mediawiki/2016/9/90/T--BostonU_HW--syringeScale_rcwolf.png" width="90%" style="padding-left:20px">
 
        <br>
 
        <br>
 
        <img src="https://static.igem.org/mediawiki/2016/4/42/T--BostonU_HW--MECboard_rcwolf.png" width="90%" style="padding-left:20px">
 
        <br>
 
        <br>
 
        <img src="https://static.igem.org/mediawiki/2016/f/f2/T--BostonU_HW--workersHat_rcwolf.png" width="90%" style="padding-left:20px">
 
      </div>
 
      <div class="col-md-9">
 
        Our Hardware system is highly adaptable for both small and large system requirements. Neptune is capable of running up to 200 servo/syringe combinations at once, fulfilling the need for the most demanding microfluidic system. This number is calculated by finding the bottleneck in data transfer from the computer to Arduino, and the transfer rate from Arduino to motor controller shield. Processing time in both the computer and Arduino are comparatively negligible.
 
        <br><br>
 
        Transfer to Arduino: 115,200 bits/second, 14,400 bytes/second
 
        Transfer to motor controller: standard mode of I2C: 100,000 bits/second, 12,500 bytes/second
 
        Bytes required for one command: 12
 
        <br><br>
 
        Therefore the maximum theoretical number of commands that can be sent at once is 12,500/12 = 1040. Including a safety margin of over 5x to ensure that all servo/syringe combinations can move 5x per second to ensure smooth motion all at once, Neptune’s set maximum is 200 servo/syringe combinations.
 
        <br><br>
 
        Neptune transforms the build area of a desktop CNC mill into that of an entire machine shop, and beyond. By milling square, modular components with pre-drilled holes for easy mounting Neptune can span a build area of one 4.2”x 4.2” square to hundreds of feet in any direction. This modularity, in addition to enabling huge build areas, allows for custom baseboard configurations to fix each project’s individual needs. The pre-drilled holes ensure proper component alignment and spacing, further adding to Neptune’s ease-of-use.
 
 
        <br><br>
 
        <a href="https://github.com/CIDARLAB/iGEM2016-Hardware" style="padding-right:20px;"> <button type="button" class="btn btn-primary">DOWNLOAD FIRMWARE</button></a>
 
        <a href="https://github.com/CIDARLAB/iGEM2016-Hardware"> <button type="button" class="btn btn-primary">DOWNLOAD 3D PRINT FILES</button></a>
 
      </div>
 
    </div>
 
    <br>
 
  </div>
 
  <div class="col-md-1"></div>
 
</div>
 
 
 
 
<br><br>
 
  
  

Latest revision as of 03:12, 20 October 2016


DEMONSTRATION





Come see all that Neptune has to offer at a live demonstration at our booth.
TAKE A LOOK AT NEPTUNE IN ACTION


Below you can find a video of a step by step walkthrough of the Neptune toolchain. We take an example case, Dr. Ali, who wants to create a device to characterize how a genetic part responds to various levels of inducer. We show how he can specify, design, build, and control his microfluidic device through Neptune’s system:


Step 1
Create a Project!
Step 2
Specify the microfluidic design in terms of liquid flow relations using a library of features provided.
Step 3
Make any parametric edits to chip features if desired in the more detailed MINT description.
Step 4
Build and Assemble the chip and control infrastructure.
Step 5
Control and use the microfluidic system!