Difference between revisions of "Team:FAU Erlangen/Description"

 
(56 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
<body>
 
<body>
 
<div id="background">
 
<div id="background">
<div id="header"><h1>
+
<div id="header" style="background-image:url(https://static.igem.org/mediawiki/2016/b/b6/Team_Erlangen_project_header.png)"><h1>
<a href="Team.html" class="">&#9664;</a>
+
 
Project
 
Project
<a href="Human Practice.html" class="">&#9654;</a>
+
</h1>
</h1></div>
+
<div id="myquote" style="color:#fff; font-size:22px; padding: 15px; line-height:30px;"> <br/><br/><br/>"The best way to predict the future is to create it." <br/> <em>Abraham Lincoln</em></div>
 +
</div>
 
<div class="navigation" id="mynavigation">
 
<div class="navigation" id="mynavigation">
 
<btn><a href="https://www.facebook.com/IGEM-FAU-Erlangen-522447454463293/"><img src="https://static.igem.org/mediawiki/2016/4/48/Team_Erlangen_FBLogo.png" width="auto" height="50px" alt=""/></a></btn>
 
<btn><a href="https://www.facebook.com/IGEM-FAU-Erlangen-522447454463293/"><img src="https://static.igem.org/mediawiki/2016/4/48/Team_Erlangen_FBLogo.png" width="auto" height="50px" alt=""/></a></btn>
<btn><a href="#"><img src="https://static.igem.org/mediawiki/2016/b/b0/Team_Erlangen_YTLogo.png" width="auto" height="50px" alt=""/></a></btn>
+
<btn><a href="https://www.youtube.com/channel/UC4lwWonhs3Dug5bASoDXf5w"><img src="https://static.igem.org/mediawiki/2016/b/b0/Team_Erlangen_YTLogo.png" width="auto" height="50px" alt=""/></a></btn>
 
<btn><a href="https://2016.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2016/5/5f/Team_Erlangen_IGLogo.png" width="auto" height="50px" alt=""/></a></btn>
 
<btn><a href="https://2016.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2016/5/5f/Team_Erlangen_IGLogo.png" width="auto" height="50px" alt=""/></a></btn>
<home><a href="#"><img src="https://static.igem.org/mediawiki/2016/f/fd/Team_Erlangen_FAULogo.png" width="auto" height="50px" alt=""/></a></home>
+
<home><a href="https://2016.igem.org/Team:FAU_Erlangen"><img src="https://static.igem.org/mediawiki/2016/f/fd/Team_Erlangen_FAULogo.png" width="auto" height="50px" alt=""/></a></home>
<ul id="mynavigationul" style="padding: 0 2.5%">
+
<ul id="mynavigationul" style="padding: 0 2.4%">
 
           <li class="icon">
 
           <li class="icon">
 
     <a href="javascript:void(0);" style="font-size:22px;" onclick="myFunction()"> &#9776;Menu</a>
 
     <a href="javascript:void(0);" style="font-size:22px;" onclick="myFunction()"> &#9776;Menu</a>
 
     </li>
 
     </li>
 
           <li><a class="hlight" href="https://2016.igem.org/Team:FAU_Erlangen/Description">Project</a><ul>
 
           <li><a class="hlight" href="https://2016.igem.org/Team:FAU_Erlangen/Description">Project</a><ul>
               <a href="#Inspiration"><li>Inspiration</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Description#Inspiration"><li>Inspiration</li></a>
               <a href="#Biofilm"><li>Biofilm</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Description#Biofilm"><li>Biofilm</li></a>
               <a href="#BioSolar"><li>Biofilm Solar Cell</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Description#BioSolar"><li>Grätzel Cell</li></a>
              <a href="#GCell"><li>Grätzel Cell</li></a>
+
                <a href="https://2016.igem.org/Team:FAU_Erlangen/Description#GCell"><li>Parts</li></a>
                 <a href="#GCell"><li>Results</li></a>
+
                 <a href="https://2016.igem.org/Team:FAU_Erlangen/Description#Parts"><li>References</li></a>
 +
          </ul></li>
 +
          <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Results">Results</a>
 +
          <ul>
 +
              <a href="https://2016.igem.org/Team:FAU_Erlangen/Results#Inspiration"><li>Growing Biofilms</li></a>
 +
              <a href="https://2016.igem.org/Team:FAU_Erlangen/Results#Biofilm"><li>Binding of Heavy Metals</li></a>
 +
              <a href="https://2016.igem.org/Team:FAU_Erlangen/Results#BioSolar"><li>ZnO Mineralization</li></a>
 +
                <a href="https://2016.igem.org/Team:FAU_Erlangen/Results#GCell"><li>Solar cell results</li></a>
 +
                <a href="https://2016.igem.org/Team:FAU_Erlangen/Results#Parts"><li>References</li></a>
 
           </ul></li>
 
           </ul></li>
           <li><a href="https://2016.igem.org/Team:FAU_Erlangen/Results">Results</a></li>
+
           <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Notebook">Notebook</a>
          <li><a href="https://2016.igem.org/Team:FAU_Erlangen/Notebook">Lab Journal</a>
+
 
               <ul>
 
               <ul>
               <a href="#"><li>Biology</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Notebook#Inspiration"><li>Biology</li></a>
               <a href="#"><li>Chemistry/Physics</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Notebook#Biofilm"><li>Chemistry/Physics</li></a>
 +
                <a href="https://2016.igem.org/Team:FAU_Erlangen/Notebook#BioSolar"><li>References</li></a>
 
               </ul>
 
               </ul>
 
           </li>
 
           </li>
           <li><a href="https://2016.igem.org/Team:FAU_Erlangen/https://2016.igem.org/Team:FAU_Erlangen/Human_Practices">Human Practices</a>
+
           <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Human_Practices">Human Practices</a>
 
           <ul>
 
           <ul>
               <a href="#"><li>School laboratory</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Human_Practices#Inspiration"><li>School laboratory</li></a>
               <a href="#"><li>Science Day</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Human_Practices#Biofilm"><li>Science Day</li></a>
              <a href="#"><li>Game</li></a>
+
 
           </ul>
 
           </ul>
 
           </li>
 
           </li>
           <li><a href="https://2016.igem.org/Team:FAU_Erlangen/Collaborations">Collaborations</a>
+
           <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Collaborations">Collaborations</a>
 
           <ul>
 
           <ul>
               <a href="#"><li>iGEM Team Marburg</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Collaborations#Inspiration"><li>iGEM Team Aachen</li></a>
               <a href="#"><li>iGEM Team Munich</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Collaborations#Biofilm"><li>iGEM Team Munich</li></a>
               <a href="#"><li>iGEM Team Aachen</li></a>
+
               <a href="https://2016.igem.org/Team:FAU_Erlangen/Collaborations#BioSolar"><li>iGEM Team Marburg</li></a>
 
           </ul></li>
 
           </ul></li>
           <li><a href="Safety.html">Safety</a></li>
+
           <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Safety">Safety</a><ul>
           <li><a href="https://2016.igem.org/Team:FAU_Erlangen/Achievements">Achievements</a></li>
+
              <a href="https://2016.igem.org/Team:FAU_Erlangen/Safety#Inspiration"><li>Killswitch</li></a>
           <li><a href="https://2016.igem.org/Team:FAU_Erlangen/Team">Team</a></li>
+
              <a href="https://2016.igem.org/Team:FAU_Erlangen/Safety#Biofilm"><li>Binding of Heavy Metals</li></a>
 +
              <a href="https://2016.igem.org/Team:FAU_Erlangen/Safety#BioSolar"><li>References</li></a>
 +
          </ul></li>
 +
           <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Achievements">Achievements</a></li>
 +
           <li><a class="" href="https://2016.igem.org/Team:FAU_Erlangen/Team">Team</a></li>
 
</ul>
 
</ul>
 
</div>
 
</div>
Line 55: Line 66:
 
  <a class="active" href="#Inspiration" id="cInspiration"><li>Inspiration</li></a>
 
  <a class="active" href="#Inspiration" id="cInspiration"><li>Inspiration</li></a>
 
  <a href="#Biofilm" id="cBiofilm"><li>Biofilm</li></a>
 
  <a href="#Biofilm" id="cBiofilm"><li>Biofilm</li></a>
  <a href="#BioSolar" id="cBioSolar"><li>Biofilm Solar Cell</li></a>
+
  <a href="#BioSolar" id="cBioSolar"><li>Grätzel Cell</li></a>
<a href="#GCell" id="cGCell"><li>Grätzel Cell</li></a>
+
<a href="#GCell" id="cGCell"><li>Parts</li></a>
 +
<a href="#Parts" id="cParts"><li>References</li></a>
 
</ul>
 
</ul>
 
</div>
 
</div>
<div class="mcontent" id="mycontent"><p align="justify">
+
<div class="mcontent" id="mycontent">
<div align="justify" width="100%" height="100%">
+
<div align="left" style="width:80%;height:100%; margin:0 auto;">
  
 
<p class="cb" id="Inspiration"></p>
 
<p class="cb" id="Inspiration"></p>
Line 66: Line 78:
 
<h1 id=""style="border-bottom: solid thin #aaa">Inspiration</h1>
 
<h1 id=""style="border-bottom: solid thin #aaa">Inspiration</h1>
 
<p style="font-size:22px">
 
<p style="font-size:22px">
The limitation of fossil fuels such as oil, coal and gas intensities the need to find different „materials“ to gain energy for a constantly rising population in the world. The energy can be provided by nature using wind, water, plants and the sun. Solar energy conversion can be a crucial factor as sun is present every day in almost every region in the world. Thereby an efficient conversion of solar energy is as important as the expenses for the solar cells. To reduce the price less expensive materials as well as the costs for production can be considered.
+
The limitation of fossil fuels such as oil, coal and gas intensifies the need to find different sources to provide energy for a constantly rising world population. Renewable energy can be supplied by natural agents such as wind, water, plants or the sun. The conversion of solar energy in particular is a crucial issue as the sun presents an inexhaustible and easily accessible energy source for most inhabited regions of the Earth. Thus, optimizing the balance between efficient conversion of solar energy and the affordability and ease-of-manufacturing of solar cells is an important task for the future. In this regard, lower production costs will benefit manufacturer, customer, and the environment alike. <br/><br/>
Commercially available silicon solar cells provide a good solar energy conversion rate in combination with moderate costs. To reduce the costs for the raw materials an inspiration from photosynthesis can be drawn. Here a chlorophyll molecule is excited to inject its electron into a redox cascade. The same principle can be chosen for solar cells applying dyes which can transfer electrons to a transparent semiconductor. These semiconductors can be either ZnO and TiO2, which are produced in a large scale for the application in e.g. tooth paste or sun screen.<br/> <br/>  
+
Commercially available silicon solar cells provide a decent solar energy conversion rate in combination with moderate costs. As with most technologies, these factors may be improved by imitating natural processes, in this case photosynthesis. Upon absorption of a photon, a chlorophyll molecule is excited and donates its high energy electron into a redox cascade. This principle can be applied to solar cells by adding dyes that transfer electrons to a transparent semiconductor. Possible semiconductors are zinc oxide (ZnO) and titanium dioxide (TiO<sub>2</sub>), which are both produced in large quantities as ingredients of tooth paste, sun screen etc. <br/><br/>
To reduce the production costs a large part can be covered by living cells, which work autonomous. In particular biofilms can be used since they provide the possibility to integrate metals inside its texture and can be mineralized. Hence the transparent semiconductor can be deposited by adding the initial salts to the bacteria solution. The process of mineralization can be done either during the growth of the biofilm or after the growth. The dyes for the solar cells can also be provided by E.Coli, which was demonstrated by the iGEM of Darmstadt in 2014 (link von deren homepage). The only technical process is the deposition of electrolyte and the sealing of the whole cell, which prevents this type of solar cell from drying out.
+
To reduce the production costs, a large area of the solar cell can be covered by autonomously working, living bacteria. Especially biofilms provide a promising approach because they can integrate metals into their structure and may be mineralized. Hence, the transparent semiconductor can be deposited by adding the initial salts to the bacteria solution. Mineralization may be performed either during the growth of the biofilm or after its growth. The electron donating dyes can also be provided by <i>Escherichia coli</i>, which was demonstrated by the iGEM team from <a href="https://2014.igem.org/Team:TU_Darmstadt">Darmstadt</a> in 2014. The only technical process is the deposition of the electrolyte and the sealing of the complete solar cell, which prevents the cell from drying out. <br/>
 
</p>
 
</p>
 
<p class="cb" id="Biofilm"></p>
 
<p class="cb" id="Biofilm"></p>
Line 74: Line 86:
 
<h1 id="" style="border-bottom: solid thin #aaa">Biofilm</h1>
 
<h1 id="" style="border-bottom: solid thin #aaa">Biofilm</h1>
 
<p style="font-size:22px">
 
<p style="font-size:22px">
A biofilm is a system that can be adapted internally to environmental conditions by its inhabitants. Note 2: The self-produced matrix of extracellular polymeric substance, which is also referred to as slime, is a polymeric conglomeration generally composed of extracellular biopolymers in various structural forms.  
+
According to a IUPAC recommendation, a biofilm is an... “Aggregate of microorganisms in which cells that are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) adhere to each other and/or to a surface. [...] A biofilm is a system that can be adapted internally to environmental conditions by its inhabitants. […] The self-produced matrix of EPS, which is also referred to as slime, is a polymeric conglomeration generally composed of extracellular <i>biopolymers</i> in various structural forms.” (Vert et al., 2012).
 
</p>
 
</p>
<p align="center" style="clear:both margin: 0 auto">
+
 
<img src="https://static.igem.org/mediawiki/2016/c/c5/Team_Erlangen_Bio1.png" width="60%" height="auto" alt=""/>
+
<div style="margin: 0 auto" align="center">
 +
<img src="https://static.igem.org/mediawiki/2016/c/c5/Team_Erlangen_Bio1.png" width="80%" height="auto" alt=""style="display: block margin: auto"/>
 +
</div>
 +
<p style="font-size:16px; color:#333; text-align:center">
 +
Figure 1: Steps of formation and maturation of a biofilm (Vlamakis et al., 2013).
 
</p>
 
</p>
 +
 
<p style="font-size:22px">
 
<p style="font-size:22px">
Bacteria form these described aggregates in three-dimensional structures, to survive in the face of environmental stresses. To build these aggregates, the bacteria have to specialize themselves to attach to the surface and to communicate with other microorganisms: They will lose their flagella and will produce proteins for quorum sensing and induce expression of extracellular polymeric substances often called slime. <br/><br/>
+
Bacteria form the three-dimensional structures shown in Figure 1 to survive in the face of environmental stress. To assemble these aggregates, the bacteria have to specialize themselves to attach to the surface and to communicate with other microorganisms. In the process, they will lose their flagella, produce proteins for quorum sensing and induce expression of extracellular polymeric substances usually called slime.
Enteric bacteria such as Escherichia coli and Salmonella spp. express proteinaceous extracellular fibers called curli that are involved in surface and cell-cell contacts that promote community behavior and host colonization. Between the basal biofilm and the outer biofilm there are pores, canals and corridors to transport a lot of substances like nanoparticles through the “slime”.  
+
 
</p>
 
</p>
  
<h2>Curli and the importance for our project</h2>
+
<h2>The importance of curli fibers for our project</h2>
 
<p style="font-size:22px">
 
<p style="font-size:22px">
Enteric bacteria such as Escherichia coli and Salmonella spp. express proteinaceous extracellular fibers called curli that are involved in surface and cell-cell contacts that promote community behavior and host colonization. (paper auf studon)
+
Curli fibers, or simply curli, are thin, extracellular, proteinaceous structures produced by E.coli and other bacteria. Next to influencing community behavior and host cell adhesion, these amyloid fibers play a role in surface contacts and cell aggregation and mediate the formation of biofilms (Barnhart and Chapman, 2006). <br/><br/>
CsgA monomers are the major part of the Curli fibers and are secreted in the extracellular environment by E.coli W3110 itself. Being extracellular it has the opportunity to interact with various substances in a biofilm. Some bacterial strains are producing an extracellular matrix called biofilm, which is protecting them from environmental impacts. This matrix is composed of proteins, polysaccharides, lipids and nucleic acids. One of the main structural components in Escherichia coli biofilms are curli fibers, with a diameter of 4-7 nanometer that can made up to 10-40% of the whole biofilm.(Nguyen et.al) These fibers are amyloid structures, which are anchored on the bacterial cell surface and are assembled of 13 kDa CsgA proteins. For the production of these fibers the curli-system consists of two operons, containing seven genes: csgBAC and csgDEFG. The self-assembly and nucleation of CsgA on the cell surface is mediated by CsgB. CsgC/G are responsible for the secretion and CsgE/F for producing of CsgA. CsgD is the transcriptional regulator of this system. The following figure shows the Curli-producing process.
+
Curli-related proteins are the products of two operons containing seven genes in total: csgBAC and csgDEFG. Of the seven proteins, CsgD is the transcriptional regulator and CsgE/F are responsible for the processing of CsgA. CsgC mediates the secretion of CsgA through the translocator CsgG. CsgB serves as the origin of nucleation and anchors CsgA, which makes up the majority of curli fibers, to the outer membrane (Nguyen et al., 2014; Hobley et al., 2015). The production of curli is demonstrated in Figure 2.
For our project it was important, that the curli fibers are promoting the growth of biofilms and to interact with special nanoparticles.  
+
 
</p>
 
</p>
<p align="center">
+
 
<img src="https://static.igem.org/mediawiki/2016/e/ed/Team_Erlangen_Bio2.png" width="30%" height="auto" alt=""/>
+
<div style="margin: 0 auto" align="center">
 +
<img src="https://static.igem.org/mediawiki/2016/e/ed/Team_Erlangen_Bio2.png" width="40%" height="auto" alt=""style="display: block margin: auto"/>
 +
</div>
 +
<p style="font-size:16px; color:#333; text-align:center">
 +
Figure 2: Biosynthetic pathway and formation of curli fibers from CsgA subunits (Hobley et al., 2015)
 
</p>
 
</p>
 +
 
<p style="font-size:22px">
 
<p style="font-size:22px">
After investigating old iGEM Team projects and other articles, we decided to ask our friends from the iGEM Team Marburg 2015 if they can send us their biobrick plasmid pPickUp (BBa_K1650047) and their E.coli strain W3110. pPickUp has the advantage having a SpyTag, which has strong similarities to some ZnO-Nanoparticle binding proteins which are already published.  
+
Up to 40% of the total biofilm volume can be occupied by curli (Nguyen et al., 2014). Since curli consist mostly of CsgA monomers that interact with each other and possibly with other substances in the biofilm, modifying these monomers provides a simple way to change the properties of the whole biofilm.
If the SpyTag can interact with our nanoparticles we do neither need an extra tag, which are already published nor an adaptor protein with interacts with the scaffold protein CsgA and the nanoparticles – killing two birds with one stone
+
 
</p>
 
</p>
 +
 
<p class="cb" id="BioSolar"></p>
 
<p class="cb" id="BioSolar"></p>
 
<br/>
 
<br/>
<h1 id="">Biofilm Solarcell</h1>
+
<h1 style="border-bottom: solid thin #aaa">Grätzel Cell</h1>
 
+
<h2>Setup of a Dye Sensitized Solar Cell</h2>
<p style="font-size:22px">
+
Inhalt Biosolar
+
</p>
+
<p class="cb" id="GCell"></p>
+
<br/>
+
<h1>Grätzel Cell</h1>
+
<h2>Setup of a Dye Sensitized Solar Cell (DSSC)</h2>
+
 
<p style="font-size:22px">
 
<p style="font-size:22px">
A dye sensitized solar cell does not require expensive material or complex working conditions. It can be basically built of tooth paste or sun screen in combination with a dye obtained from fruits or tea. The starting material is a glass slide which is coated with a transparent conducting material. The commonly used coating materials are Indium Tin Oxide (ITO) or Fluorine doped Tin Oxide (FTO). On the conducting slide the transparent semiconductors ZnO or TiO2 can be deposited, which serve as electron transporting layer. This layer can be soaked with the dye. Functional groups of the dye molecules direct and anchor them on the surface of the semiconductor. On this layer an electrolyte containing Iodine and Iodide providing the electrons to flow in the cell. The cell is completed with another glass slide coated with conducting traditional materials such as graphite or platinum.  
+
A dye sensitized solar cell (DSSC) does not require expensive material or complex working conditions. It can be literally built out of tooth paste or sun screen combined with a dye obtained from fruits or tea. The starting layer is a glass slide coated with a transparent conducting material. Commonly used coating materials are indium tin oxide (ITO) or fluorine doped tin oxide (FTO). The transparent semiconductors ZnO or TiO<sub>2</sub> can be deposited on the conducting slide and serve as the electron transporting layer, which is then soaked with a dye. Functional groups of the dye molecules direct and anchor them on the surface of the semiconductor. An electrolyte containing iodine and iodide is added onto this layer to provide electrons and facilitate current flow. The cell is completed with another glass slide coated with traditional conducting materials such as graphite or platinum.  
 
</p>
 
</p>
 
<h2>Mechanism of a DSSC</h2>
 
<h2>Mechanism of a DSSC</h2>
 
<p style="font-size:22px">
 
<p style="font-size:22px">
Starting with the irradiation of the complete cell the electrons in the organic dye is excited to a higher level, which is called LUMO (lowest unoccupied molecular orbital). If the LUMO level is energetically high enough the electron can be transferred to the conduction band of the transparent semiconductor. The semiconductor, commonly made of ZnO or TiO2, can then induce the electron to the electrode. The missing electron of the dye can be restored by the electrolyte and the electrolyte can reobtain its electron from the cathode. There the cycle closes and a current is flowing continuously during light irradiation.
+
Upon irradiation of the solar cell, the electrons in the organic dye are excited to a higher level, called the lowest unoccupied molecular orbital (LUMO). If the LUMO level is energetically high enough, the electron can be transferred to the conduction band of the transparent semiconductor and from there continue to the anode. The missing electron of the dye is restored by the electrolyte and the electrolyte regains its electron from the cathode. This results in a continuous current flow for the duration of the irradiation.  
 
</p>
 
</p>
  
</div></p></div>
+
<p class="cb" id="GCell"></p>
 +
<br/>
 +
<h1 style="border-bottom: solid thin #aaa">Parts</h1>
 +
 
 +
<table width="100%" border="1" style="margin-left:2%;">
 +
  <tbody>
 +
    <tr>
 +
      <td>Zinc Oxide binding Peptide:</td>
 +
      <td>part:BBa_K2169137</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Zinc Sulfide nucleation peptide:</td>
 +
      <td>part:BBa_K2169138</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Zinc Oxide bindings CsgA:</td>
 +
      <td>part:BBa_K2169001</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Metal sulfide binding CsgA:</td>
 +
      <td>part:BBa_K2169000</td>
 +
    </tr>
 +
  </tbody>
 +
</table>
 +
 
 +
<p class="cb" id="Parts"></p>
 +
<br/>
 +
<h1 style="border-bottom: solid thin #aaa">References</h1>
 +
 
 +
<ul style="list-style:none; line-height:20px; font-size:18px;">
 +
<li> Barnhart, M. M., & Chapman, M. R. (2006). Curli biogenesis and function. <i>Annual review of microbiology, 60</i>, 131. doi: 10.1146/annurev.micro.60.080805.142106</li><br/>
 +
<li>Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. <i>FEMS microbiology reviews, 39</i>(5), 649-669. doi: 10.1093/femsre/fuv015</li><br/>
 +
<li>Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R., & Joshi, N. S. (2014). Programmable biofilm-based materials from engineered curli nanofibres. <i>Nature communications, 5</i>. doi: 10.1038/ncomms5945</li><br/>
 +
<li>Vert, M., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). <i>Pure and Applied Chemistry, 84</i>(2), 377-410. doi: 10.1351/PAC-REC-10-12-04</li><br/>
 +
<li>Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., & Kolter, R. (2013). Sticking together: building a biofilm the <i>Bacillus subtilis</i> way. <i>Nature Reviews Microbiology, 11</i>(3), 157-168. doi: 10.1038/nrmicro2960</li><br/>
 +
</ul>
 +
 
 +
<br/><br/><br/>
 +
 
 +
</div></div>
 
<div id="mtoolbox">
 
<div id="mtoolbox">
 
<p align="right" id="tools">
 
<p align="right" id="tools">
<a href="#"> <img src="https://static.igem.org/mediawiki/2016/1/15/Team_Erlangen_up.png" width="15%" height="auto" alt=""/></a>
+
<a href="#" style="color:#000; font-size:40px; text-decoration:none;"> &#9650; </a>
 
</p>
 
</p>
 
</div>
 
</div>
</div>
 
<div id="footer">
 
<img src="sponsoren.PNG" width="100%" height="100%" alt=""/>
 
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
</html>
 +
{{Team:FAU-Erlangen/Footer}}
 +
<html>
  
 
<script>
 
<script>
Line 137: Line 190:
 
$('#cBioSolar').removeClass("active");
 
$('#cBioSolar').removeClass("active");
 
$('#cGCell').removeClass("active");
 
$('#cGCell').removeClass("active");
 +
                $('#cParts').removeClass("active");
 
} else if( scrollTop < $('#BioSolar').offset().top ){
 
} else if( scrollTop < $('#BioSolar').offset().top ){
 
$('#cInspiration').removeClass("active");
 
$('#cInspiration').removeClass("active");
Line 142: Line 196:
 
$('#cBioSolar').removeClass("active");
 
$('#cBioSolar').removeClass("active");
 
$('#cGCell').removeClass("active");
 
$('#cGCell').removeClass("active");
 +
                $('#cParts').removeClass("active");
 
}else if( scrollTop < $('#GCell').offset().top ){
 
}else if( scrollTop < $('#GCell').offset().top ){
 
$('#cInspiration').removeClass("active");
 
$('#cInspiration').removeClass("active");
Line 147: Line 202:
 
$('#cBioSolar').addClass("active");
 
$('#cBioSolar').addClass("active");
 
$('#cGCell').removeClass("active");
 
$('#cGCell').removeClass("active");
}else{
+
                $('#cParts').removeClass("active");
 +
}else if( scrollTop < $('#Parts').offset().top ){
 
$('#cInspiration').removeClass("active");
 
$('#cInspiration').removeClass("active");
 
$('#cBiofilm').removeClass("active");
 
$('#cBiofilm').removeClass("active");
 
$('#cBioSolar').removeClass("active");
 
$('#cBioSolar').removeClass("active");
 
$('#cGCell').addClass("active");
 
$('#cGCell').addClass("active");
}
+
                $('#cParts').removeClass("active");
 +
}else{
 +
                $('#cInspiration').removeClass("active");
 +
$('#cBiofilm').removeClass("active");
 +
$('#cBioSolar').removeClass("active");
 +
$('#cGCell').removeClass("active");
 +
                $('#cParts').addClass("active");
 +
        }
 
});
 
});
 
})
 
})

Latest revision as of 03:41, 20 October 2016

iGEM Erlangen


Inspiration

The limitation of fossil fuels such as oil, coal and gas intensifies the need to find different sources to provide energy for a constantly rising world population. Renewable energy can be supplied by natural agents such as wind, water, plants or the sun. The conversion of solar energy in particular is a crucial issue as the sun presents an inexhaustible and easily accessible energy source for most inhabited regions of the Earth. Thus, optimizing the balance between efficient conversion of solar energy and the affordability and ease-of-manufacturing of solar cells is an important task for the future. In this regard, lower production costs will benefit manufacturer, customer, and the environment alike.

Commercially available silicon solar cells provide a decent solar energy conversion rate in combination with moderate costs. As with most technologies, these factors may be improved by imitating natural processes, in this case photosynthesis. Upon absorption of a photon, a chlorophyll molecule is excited and donates its high energy electron into a redox cascade. This principle can be applied to solar cells by adding dyes that transfer electrons to a transparent semiconductor. Possible semiconductors are zinc oxide (ZnO) and titanium dioxide (TiO2), which are both produced in large quantities as ingredients of tooth paste, sun screen etc.

To reduce the production costs, a large area of the solar cell can be covered by autonomously working, living bacteria. Especially biofilms provide a promising approach because they can integrate metals into their structure and may be mineralized. Hence, the transparent semiconductor can be deposited by adding the initial salts to the bacteria solution. Mineralization may be performed either during the growth of the biofilm or after its growth. The electron donating dyes can also be provided by Escherichia coli, which was demonstrated by the iGEM team from Darmstadt in 2014. The only technical process is the deposition of the electrolyte and the sealing of the complete solar cell, which prevents the cell from drying out.


Biofilm

According to a IUPAC recommendation, a biofilm is an... “Aggregate of microorganisms in which cells that are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) adhere to each other and/or to a surface. [...] A biofilm is a system that can be adapted internally to environmental conditions by its inhabitants. […] The self-produced matrix of EPS, which is also referred to as slime, is a polymeric conglomeration generally composed of extracellular biopolymers in various structural forms.” (Vert et al., 2012).

Figure 1: Steps of formation and maturation of a biofilm (Vlamakis et al., 2013).

Bacteria form the three-dimensional structures shown in Figure 1 to survive in the face of environmental stress. To assemble these aggregates, the bacteria have to specialize themselves to attach to the surface and to communicate with other microorganisms. In the process, they will lose their flagella, produce proteins for quorum sensing and induce expression of extracellular polymeric substances usually called slime.

The importance of curli fibers for our project

Curli fibers, or simply curli, are thin, extracellular, proteinaceous structures produced by E.coli and other bacteria. Next to influencing community behavior and host cell adhesion, these amyloid fibers play a role in surface contacts and cell aggregation and mediate the formation of biofilms (Barnhart and Chapman, 2006).

Curli-related proteins are the products of two operons containing seven genes in total: csgBAC and csgDEFG. Of the seven proteins, CsgD is the transcriptional regulator and CsgE/F are responsible for the processing of CsgA. CsgC mediates the secretion of CsgA through the translocator CsgG. CsgB serves as the origin of nucleation and anchors CsgA, which makes up the majority of curli fibers, to the outer membrane (Nguyen et al., 2014; Hobley et al., 2015). The production of curli is demonstrated in Figure 2.

Figure 2: Biosynthetic pathway and formation of curli fibers from CsgA subunits (Hobley et al., 2015)

Up to 40% of the total biofilm volume can be occupied by curli (Nguyen et al., 2014). Since curli consist mostly of CsgA monomers that interact with each other and possibly with other substances in the biofilm, modifying these monomers provides a simple way to change the properties of the whole biofilm.


Grätzel Cell

Setup of a Dye Sensitized Solar Cell

A dye sensitized solar cell (DSSC) does not require expensive material or complex working conditions. It can be literally built out of tooth paste or sun screen combined with a dye obtained from fruits or tea. The starting layer is a glass slide coated with a transparent conducting material. Commonly used coating materials are indium tin oxide (ITO) or fluorine doped tin oxide (FTO). The transparent semiconductors ZnO or TiO2 can be deposited on the conducting slide and serve as the electron transporting layer, which is then soaked with a dye. Functional groups of the dye molecules direct and anchor them on the surface of the semiconductor. An electrolyte containing iodine and iodide is added onto this layer to provide electrons and facilitate current flow. The cell is completed with another glass slide coated with traditional conducting materials such as graphite or platinum.

Mechanism of a DSSC

Upon irradiation of the solar cell, the electrons in the organic dye are excited to a higher level, called the lowest unoccupied molecular orbital (LUMO). If the LUMO level is energetically high enough, the electron can be transferred to the conduction band of the transparent semiconductor and from there continue to the anode. The missing electron of the dye is restored by the electrolyte and the electrolyte regains its electron from the cathode. This results in a continuous current flow for the duration of the irradiation.


Parts

Zinc Oxide binding Peptide: part:BBa_K2169137
Zinc Sulfide nucleation peptide: part:BBa_K2169138
Zinc Oxide bindings CsgA: part:BBa_K2169001
Metal sulfide binding CsgA: part:BBa_K2169000


References

  • Barnhart, M. M., & Chapman, M. R. (2006). Curli biogenesis and function. Annual review of microbiology, 60, 131. doi: 10.1146/annurev.micro.60.080805.142106

  • Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS microbiology reviews, 39(5), 649-669. doi: 10.1093/femsre/fuv015

  • Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R., & Joshi, N. S. (2014). Programmable biofilm-based materials from engineered curli nanofibres. Nature communications, 5. doi: 10.1038/ncomms5945

  • Vert, M., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. doi: 10.1351/PAC-REC-10-12-04

  • Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., & Kolter, R. (2013). Sticking together: building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 11(3), 157-168. doi: 10.1038/nrmicro2960