Difference between revisions of "Team:UST Beijing/Model"

 
(4 intermediate revisions by 2 users not shown)
Line 75: Line 75:
 
<body>
 
<body>
 
        
 
        
 +
<!-- BEGIN HEADER -->
 
<!-- BEGIN HEADER -->
 
<!-- BEGIN HEADER -->
 
<header id="fh5co-header" role="banner">
 
<header id="fh5co-header" role="banner">
Line 92: Line 93:
 
                   <li><a href="https://2016.igem.org/Team:UST_Beijing/EnzymaticActivity">Enzymatic Activity</a></li>
 
                   <li><a href="https://2016.igem.org/Team:UST_Beijing/EnzymaticActivity">Enzymatic Activity</a></li>
 
                     <li class="divider"></li>
 
                     <li class="divider"></li>
                     <li><a href="https://2016.igem.org/Team:UST_Beijing/Model">Recombination</a></li>
+
                     <li><a href="https://2016.igem.org/Team:UST_Beijing/Description">Recombination</a></li>
 
                     <li class="divider"></li>
 
                     <li class="divider"></li>
 
                     <li><a href="https://2016.igem.org/Team:UST_Beijing/Demonstrate">Mixed Fermentation</a></li>
 
                     <li><a href="https://2016.igem.org/Team:UST_Beijing/Demonstrate">Mixed Fermentation</a></li>
Line 99: Line 100:
 
               </ul>
 
               </ul>
 
                                                 </li>
 
                                                 </li>
          <li class="dropdown">
+
          <li><a href="https://2016.igem.org/Team:UST_Beijing/Model">Modeling</a></li>
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Modeling <b class="caret"></b>
+
              </a>
+
                <ul class="dropdown-menu">
+
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Model">Mathematic Model</a></li>
+
                    <li class="divider"></li>
+
                    <li><a href="https://2016.igem.org/Team:UST_Beijing/AnimalModel">Animal Model</a></li>
+
              </ul>
+
                                                </li>
+
 
           <li><a href="https://2016.igem.org/Team:UST_Beijing/Parts">Parts</a></li>
 
           <li><a href="https://2016.igem.org/Team:UST_Beijing/Parts">Parts</a></li>
 +
 
           <li class="dropdown">
 
           <li class="dropdown">
 
               <a href="#" class="dropdown-toggle" data-toggle="dropdown">Human Practices <b class="caret"></b>
 
               <a href="#" class="dropdown-toggle" data-toggle="dropdown">Human Practices <b class="caret"></b>
Line 144: Line 139:
 
<div class="row">
 
<div class="row">
 
<div class="col-md-8 col-md-offset-2">
 
<div class="col-md-8 col-md-offset-2">
<h1 class="intro-lead">Model</h1>
+
<h1 class="intro-lead">Modeling</h1>
<p>We analysised the pet28a-βglu plasmid and pSB1C3-T7RNAp plasmid in double-plasmid E. coli, and using JDesigner we set up the model of the expression toβ-glucosidase . This model displayed the process of pNPG’ decomposition in wells. </p>
+
<p>We analyzed the pet28a-β-glucosidase plasmid and pSB1C3-pBAD-T7RNAp plasmid in double-transformed E. coli, and using JDesigner software we set up the model of β-glucosidase expression. This model displayed the process of pNPG’ decomposition in wells. </p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 160: Line 155:
 
<div class="row">
 
<div class="row">
 
<div id="sidebar" class="col-md-3 animate-box">
 
<div id="sidebar" class="col-md-3 animate-box">
<h3>Model</h3>
+
<h3>Modeling</h3>
 
<ul class="fh5co-list-check">
 
<ul class="fh5co-list-check">
 
<li><a href="#part1">Double Plasmids</a></li>
 
<li><a href="#part1">Double Plasmids</a></li>
Line 173: Line 168:
 
<p></p>
 
<p></p>
  
<p class="animate-box">We tested the affection ofβ-glucosidase induced by IPTG(1000mM) and Ara(1000mM) on 96-well plates and measuring the A450(pNPG decomposed as substrate to pNP which can be detected at 450nm) every one hour. After collected data, we output a graph of A450-time.</p>
+
<p class="animate-box">We tested the affection of β-glucosidase induced by IPTG(1000uM) and Ara(1000uM) in 96-well plates and measuring the A450(pNPG decomposed as substrate to pNP which can be detected at 450nm) every hour. After collected data, we output a graph of A450-time.</p>
  
 
<img src="https://static.igem.org/mediawiki/2016/9/96/T--UST_Beijing--Model_1.png" style="width:700px;"></br>
 
<img src="https://static.igem.org/mediawiki/2016/9/96/T--UST_Beijing--Model_1.png" style="width:700px;"></br>
 
<p></p>
 
<p></p>
  
<p class="animate-box">We analysised the pet28a-βglu plasmid and pSB1C3-T7RNAp plasmid in double-plasmid E. coli, and using JDesigner we set up the model of the expression toβ-glucosidase . This model displayed the process of pNPG’ decomposition in wells.</p>
+
<p class="animate-box">We analyzed the pET28a-β-glucosidase plasmid and pSB1C3-pBAD-T7RNAp plasmid in double-transformed E. coli, and using JDesigner we set up the model of the expression toβ-glucosidase . This model displayed the process of pNPG’ decomposition in wells.</p>
  
 
<img src="https://static.igem.org/mediawiki/2016/5/50/T--UST_Beijing--Model_2.jpeg" style="width:700px;"></br>
 
<img src="https://static.igem.org/mediawiki/2016/5/50/T--UST_Beijing--Model_2.jpeg" style="width:700px;"></br>
Line 187: Line 182:
 
<img src="https://static.igem.org/mediawiki/2016/a/ae/T--UST_Beijing--Model_3.png" style="width:700px;"></br>
 
<img src="https://static.igem.org/mediawiki/2016/a/ae/T--UST_Beijing--Model_3.png" style="width:700px;"></br>
 
<p></p>
 
<p></p>
<p class="animate-box">In this result, the parameter (k1, k2_Vmax, k2_Km, k2_Ki, k3_1, k3_2, k4, k5) is 1, 3.4, 2.9, 0.4, 1, 96000. </p>
+
<p class="animate-box">In this result, the parameter (k1, k2_Vmax, k2_Km, k2_Ki, k3_1, k3_2, k4, k5) is 1, 3.4, 2.9, 0.4, 1, 96000, 1, 1. </p>
 
</div>
 
</div>
  
Line 197: Line 192:
 
<img src="https://static.igem.org/mediawiki/2016/3/39/T--UST_Beijing--model02.png" style="width:700px;"></br>
 
<img src="https://static.igem.org/mediawiki/2016/3/39/T--UST_Beijing--model02.png" style="width:700px;"></br>
 
<p></p>
 
<p></p>
<p class="animate-box">β-galactosidase is used to deglycosylate saponin of notoginseng. Our Lab have a PET-28a plasmid withβ-galactosidase gene and LacI gene. The transcription of β-galactosidase is repressed by LacI protein. But lactose and IPTG can induce the expression of LacI protein. We used a 3L fermentation tank to conduct preliminary experiments, then the enzyme was extracted from bacteria solution using glycine buffer. The result showed us that extracted solution has strong ability to hydrolyze glycosyl. However, there’s no lactose in notoginseng solid medium. In order to reduce costs, another plasmid psb1C3 which contains T7 RNA Polymerase gene and was transformed into E.coli. Psb1C3 contains T7 RNA Polymerase gene and can be regulated by pBAD. This double-plasmid system is expected to be regulated by pPAD, and expresses a large number of T7RNA polymerase to inhibit the effect of LacI repression, switch on the expression ofβ-galactosidase. It’s been reported in bibliography that the cellwall of notoginseng contains a certain concentration of arabinose. Our ultimate goal is using notoginseng to provide nutrients for E.coli in a solid state fermentation jar, E.coli can deglycosylate saponin of notoginseng as well.</p>
+
<p class="animate-box">β-glucosidase is used to hydrolyze sugars from saponins of notoginseng. Our Lab has a pET-28a plasmid with β-glucosidase gene. The transcription of β-glucosidase is repressed by LacI protein. But lactose and IPTG can induce the expression of LacI protein. We used a 3L fermentation tank to conduct preliminary experiments, then the enzyme was extracted from bacteria solution using glycine buffer. The result showed us that extracted solution has strong ability to hydrolyze saponins. However, there’s no lactose in notoginseng solid fermentation medium. In order to reduce costs, another plasmid pSB1C3 which contains T7 RNA Polymerase gene under the control of pBAD promoter was transformed into E.coli. This double-plasmid system is expected to be regulated by arabinose, and expresses a large number of T7RNA polymerase to overcome the effect of LacI repression, switch on the expression of β-glucosidase. It’s been reported in scientific literature that the cell wall of notoginseng root cells contains a certain concentration of arabinose. Our ultimate goal is to use notoginseng root to provide nutrients for E.coli in solid state fermentation, where E.coli can hydrolyze saponin of notoginseng as well.</p>
  
  
Line 214: Line 209:
  
  
<footer id="fh5co-footer">
+
<footer id="fh5co-footer">
 
<div class="container">
 
<div class="container">
 
<div class="row">
 
<div class="row">
<div class="col-md-10 col-md-offset-1 text-center">
+
      <div class="col-md-10 col-md-offset-1 text-center" style="text-align: left;">
<p>北京科技大学</p>
+
<div class="col-xs-3">
 +
                <ul class="list-unstyled" style="margin:0; font-family:'Gotham5dbe91ec4165f3';font-weight:bold ">
 +
  <a href="#"><h4 style="font-weight:bold">Project</h4></a>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/HP/Gold">Background</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/EnzymaticActivity">Enzymatic activity</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Description">Recombination</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Demonstrate">Mixed Fermentation</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Description">Animal Experiment</a></li>
 +
                </ul>
 +
              </div>
 +
 +
 
 +
    <div class="col-xs-3">
 +
 
 +
<a href="https://2016.igem.org/Team:UST_Beijing/Model"><h4 style="font-weight:bold">Modeling</h4></a>
 +
</div>
 +
 
 +
  <div class="col-xs-3">       
 +
  <a href="https://2016.igem.org/Team:UST_Beijing/Parts"><h4 style="font-weight:bold">Parts</h4></a>
 +
               
 +
              </div>
 +
  <div class="col-xs-3">
 +
                <ul class="list-unstyled" style="margin:0; font-family:'Gotham5dbe91ec4165f3';font-weight:bold ">
 +
  <a href="#"><h4 style="font-weight:bold">Human practice</h4></a>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Collaborations">Collaboration</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/HP/Silver">Public engagement</a></li>
 +
                </ul>
 +
              </div>
 +
    <div class="col-xs-3">
 +
                <ul class="list-unstyled" style="margin:0; font-family:'Gotham5dbe91ec4165f3';font-weight:bold ">
 +
  <a href="#"><h4 style="font-weight:bold">Team</h4></a>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/HP/Silver">Member</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Notebook">Notebook</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Attributions">Attribution</a></li>
 +
                  <li><a href="https://2016.igem.org/Team:UST_Beijing/Satety">Safety</a></li>
 +
                </ul>
 +
              </div><img src="https://static.igem.org/mediawiki/2016/b/b8/T--UST_Beijing--logo.png" style="width:400px;margin-top: 3em;">
 +
 
 +
 
 
</div>
 
</div>
 
</div>
 
</div>

Latest revision as of 03:55, 20 October 2016

iGEM team wiki of UST_Beijing

Modeling

We analyzed the pet28a-β-glucosidase plasmid and pSB1C3-pBAD-T7RNAp plasmid in double-transformed E. coli, and using JDesigner software we set up the model of β-glucosidase expression. This model displayed the process of pNPG’ decomposition in wells.

Double Plasmids


We tested the affection of β-glucosidase induced by IPTG(1000uM) and Ara(1000uM) in 96-well plates and measuring the A450(pNPG decomposed as substrate to pNP which can be detected at 450nm) every hour. After collected data, we output a graph of A450-time.


We analyzed the pET28a-β-glucosidase plasmid and pSB1C3-pBAD-T7RNAp plasmid in double-transformed E. coli, and using JDesigner we set up the model of the expression toβ-glucosidase . This model displayed the process of pNPG’ decomposition in wells.


Set parameters as:Lac=1000, Ara=1000, pNPG=13 and export the graph to pNPG-time. Modify the parameters(k1, k2_Vmax, k2_Km, k2_Ki, k3_1, k3_2,k4, k5) until the curve fit to the graph output from origin data.


In this result, the parameter (k1, k2_Vmax, k2_Km, k2_Ki, k3_1, k3_2, k4, k5) is 1, 3.4, 2.9, 0.4, 1, 96000, 1, 1.

Enzyme activity



β-glucosidase is used to hydrolyze sugars from saponins of notoginseng. Our Lab has a pET-28a plasmid with β-glucosidase gene. The transcription of β-glucosidase is repressed by LacI protein. But lactose and IPTG can induce the expression of LacI protein. We used a 3L fermentation tank to conduct preliminary experiments, then the enzyme was extracted from bacteria solution using glycine buffer. The result showed us that extracted solution has strong ability to hydrolyze saponins. However, there’s no lactose in notoginseng solid fermentation medium. In order to reduce costs, another plasmid pSB1C3 which contains T7 RNA Polymerase gene under the control of pBAD promoter was transformed into E.coli. This double-plasmid system is expected to be regulated by arabinose, and expresses a large number of T7RNA polymerase to overcome the effect of LacI repression, switch on the expression of β-glucosidase. It’s been reported in scientific literature that the cell wall of notoginseng root cells contains a certain concentration of arabinose. Our ultimate goal is to use notoginseng root to provide nutrients for E.coli in solid state fermentation, where E.coli can hydrolyze saponin of notoginseng as well.