Difference between revisions of "Team:Aalto-Helsinki/Modelling"

(Created page with "<html lang="en"> <head> <meta content="text/html; charset=utf-8" http-equiv="Content-Type"/> <meta charset="utf-8"/> <meta content="IE=edge" http-equiv="X-UA-Compatible...")
 
m
Line 91: Line 91:
 
     <li style="float:left; font-family: bebas_neuebold;">
 
     <li style="float:left; font-family: bebas_neuebold;">
 
       <b>
 
       <b>
       <a href="index.html" style="margin-left: 10px; font-size:22px; position:absolute;">
+
       <a href="index" style="margin-left: 10px; font-size:22px; position:absolute;">
 
         AALTO-HELSINKI 2016
 
         AALTO-HELSINKI 2016
 
       </a>
 
       </a>
Line 120: Line 120:
 
       Saccharomyces cerevisiae
 
       Saccharomyces cerevisiae
 
       </i>
 
       </i>
       yeast cells. The essential principle is to couple the yeast’s natural response to the toxin to the production of a yellow fluorescent protein, Venus.
+
       yeast cells. The essential principle is to couple the yeast’s natural response against the toxin to the production of a yellow fluorescent protein, Venus.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
Line 140: Line 140:
 
       <img src="/wiki/images/7/7e/T--Aalto-Helsinki--modelling1.png" style="width:60%;"/>
 
       <img src="/wiki/images/7/7e/T--Aalto-Helsinki--modelling1.png" style="width:60%;"/>
 
       <figcaption style="text-align: center">
 
       <figcaption style="text-align: center">
       Figure 1. Promoter structure of CTT1, CCP1 and TSA1.
+
       Figure 1. Promoter structure of CTT1, CCP1 and TSA1. YRE is the Yap1p binding element, OSRE is the Skn7p binding element, and STRE is the Msn2/4p binding element.
 
       </figcaption>
 
       </figcaption>
 
     </figure>
 
     </figure>
Line 148: Line 148:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       In our constructs, these promoters are coupled to genes expressing yellow fluorescent protein (YFP). We hope to be able to roughly estimate the microcystin content of the sample from the fluorescent activity of the live yeast cells.
+
       In our constructs, these promoters are coupled to genes expressing yellow fluorescent protein (YFP). We hope to be able to get an estimate of the microcystin content of the sample from the fluorescent activity of the live yeast cells.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
       To study our detection mechanism mathematically, we have created a model for the transcription factors YAP1 and SKN7 and theirs activation in the cells, hoping to 1) validate our model by replicating experimental results for each construct, 2) determine theoretical detection thresholds and measurement accuracy and 3) provide suggestions for optimal promoter design for future iterations of the project.
+
       To study our detection mechanism mathematically, we have created a model for the transcription factors Yap1p and Skn7 and their activation in the cells, hoping to determine production patterns and thresholds of YFP and provide suggestions for optimal promoter design for future iterations of the project.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
Line 159: Line 159:
 
     <br/>
 
     <br/>
 
     <div class="sectionjee">
 
     <div class="sectionjee">
     <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
+
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
+
       As an Oxidative Stress Response mechanism, Yap1p is localized and accumulated in the nucleus.
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 183: Line 183:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       Yap1p is activated by spatial accumulation into the nucleus. The accumulation occurs by inhibition of the export of Yap1p outside the nucleus. (Toledano et al. 2004) More specifically, Yap1p contains two kinds of localization signals, a DNA-binding/nuclear localization signal (NLS) sequence in the N-terminus, and a nuclear export signal (NES) in its C-terminus. Under normal conditions, NES activity is higher compared to NLS activity and thus, Yap1p is exported out of the nucleus via the transporter Crm1p which recognizes the NES sequence (Yan et al. 1998). Under oxidative stress the NES is covered with the help of the proteins Gpx3p/Orp1p and Ybp1p which prevents Yap1p from leaving the nucleus, causing the protein to accumulate (Veal et al. 2003). Yap1p is transported into the nucleus through the transporter Pse1p which recognizes the NLS sequence (Isoyama et al. 2001). Pse1p is not affected by the oxidative stress (Isoyama et al. 2001).
+
       Yap1p is activated by spatial accumulation into the nucleus. The accumulation occurs by inhibition of the export of Yap1p outside the nucleus. (Toledano et al. 2004) More specifically, Yap1p contains two kinds of localization signals, a DNA-binding/nuclear localization signal (NLS) sequence in the N-terminus, and a nuclear export signal (NES) in its C-terminus. Under normal conditions, NES activity is higher compared to NLS activity and thus, Yap1p is exported out of the nucleus via the transporter Crm1p which recognizes the NES sequence (Yan et al. 1998). Under oxidative stress the NES is covered with the help of the proteins Gpx3p/Orp1p and Ybp1p which prevents Yap1p from leaving the nucleus, causing the protein to accumulate (Veal et al. 2003). Yap1p is transported into the nucleus through the transporter Pse1p which recognizes the NLS sequence (Isoyama et al. 2001). Pse1p is not affected by the oxidative stress (Isoyama et al. 2001). After nuclear accumulation, Yap1p targets Yap1p response element (YRE) and activates the target gene.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
Line 225: Line 225:
 
     <br/>
 
     <br/>
 
     <div class="sectionjee">
 
     <div class="sectionjee">
     <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
+
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
+
       The activation mechanisms of transcription factors Yap1p and Skn7 are higly correlated.
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 238: Line 238:
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <h1 id="THREE">
 
     <h1 id="THREE">
       Models of our Detection Mechanism
+
       Models of our detection mechanism
 
     </h1>
 
     </h1>
 
     <br/>
 
     <br/>
Line 252: Line 252:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       Since the activation of Yap1p and Skn7p is highly correlated, we have created a molecular model including both transcription factors. The molecular model of the activation of Yap1p and Skn7p is presented in the figure1.
+
       Since the activations of Yap1p and Skn7p are highly correlated, we created a molecular model including both transcription factors. Furthermore, we decided to use the suggested model of Yap1p degradation in which the Not4 protein induces its degradation after Yap1p has targeted the YRE. The molecular model of the activation of Yap1p and Skn7p is presented in figure 2.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 259: Line 259:
 
       <img src="/wiki/images/b/b5/T--Aalto-Helsinki--modelling2.png" style="width:80%;"/>
 
       <img src="/wiki/images/b/b5/T--Aalto-Helsinki--modelling2.png" style="width:80%;"/>
 
       <figcaption style="text-align: center">
 
       <figcaption style="text-align: center">
       Figure 2. The molecular model of the activation of Yap1p and Skn7p. Gpx3p = thiol peroxidase, Crm1p = Karyopherin for Yap1p export from nucleus, Pse1p = karyopherin for Yap1p import into nucleus, Trx = thioredoxin, YFP = yellow fluorescent protein.
+
       Figure 2. The molecular model of the activation of Yap1p and Skn7p during oxidative stress. Gpx3p = thiol peroxidase, Crm1p = Karyopherin for Yap1p export from nucleus, Pse1p = karyopherin for Yap1p import into nucleus, Trx = thioredoxin, YFP = yellow fluorescent protein.
 
       </figcaption>
 
       </figcaption>
 
     </figure>
 
     </figure>
Line 265: Line 265:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       In addition to Yap1p/Skn7p, we modelled the activation of two other transcription factors involved in OSR, namely Msn2p and Msn4p, which are usually collated in the literature to Msn2/4p. The molecular model we created is presented in the figure 2.
+
       In addition to Yap1p/Skn7p, we modelled the activation of two other transcription factors involved in OSR, namely Msn2p and Msn4p, which in the literature are usually merged to Msn2/4p. The molecular model we created is presented in figure 3.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 272: Line 272:
 
       <img src="/wiki/images/3/30/T--Aalto-Helsinki--modelling3.png" style="width:80%"/>
 
       <img src="/wiki/images/3/30/T--Aalto-Helsinki--modelling3.png" style="width:80%"/>
 
       <figcaption style="text-align: center">
 
       <figcaption style="text-align: center">
       Figure 3. The molecular model of Msn2/4p activation during the oxidative stress.PKA = protein kinase A, P = phosphate, Msn5p = karyopherin involed in exporting Msn2/4p from nucleus, TRX = thioredoxin, cAMP = cyclic AMP.
+
       Figure 3. The molecular model of Msn2/4p activation during the oxidative stress. PKA = protein kinase A, P = phosphate, Msn5p = karyopherin involed in exporting Msn2/4p from nucleus, TRX = thioredoxin, cAMP = cyclic AMP.
 
       </figcaption>
 
       </figcaption>
 
     </figure>
 
     </figure>
Line 292: Line 292:
 
     <ul class="justify" style="font-size:19px;">
 
     <ul class="justify" style="font-size:19px;">
 
       <li>
 
       <li>
       Transcription factor YAP1P in its reduced form and contained in the nucleus is denoted by NR
+
       Transcription factor YAP1P in its reduced form and contained in the nucleus is denoted by
 +
      <b>
 +
        NR
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       Transcription factor YAP1P in its reduced form and contained in the cytoplasm is denoted by CR.
+
       Transcription factor YAP1P in its reduced form and contained in the cytoplasm is denoted by
 +
      <b>
 +
        CR
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       Transcription factor YAP1P in its oxidized form and contained in the nucleus is denoted by NO.
+
       Transcription factor YAP1P in its oxidized form and contained in the nucleus is denoted by
 +
      <b>
 +
        NO
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       Transcription factor YAP1P in its oxidized form and contained in the cytoplasm is denoted by CO.
+
       Transcription factor YAP1P in its oxidized form and contained in the cytoplasm is denoted by
 +
      <b>
 +
        CO
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The oxidative species Gpx3 is denoted by GPX3.
+
       The oxidative species Gpx3 is denoted by
 +
      <b>
 +
        GPX3
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The transporter Pse1p is denoted by PSE1P.
+
       The transporter Pse1p is denoted by
 +
      <b>
 +
        PSE1P
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The transporter Crm1 is denoted by CRM1.
+
       The transporter Crm1 is denoted by
 +
      <b>
 +
        CRM1
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The Trx sensor is denoted by TRX.
+
       The Trx sensor is denoted by
 +
      <b>
 +
        TRX
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The transcription factor Skn7 is denoted by Skn7.
+
       The transcription factor Skn7 is denoted by
 +
      <b>
 +
        Skn7
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The weak bond between the oxidized nucleic Yap1p and the nucleic Skn7 is denoted by w(Yap1p:Skn7).
+
       The weak bond between the oxidized nucleic Yap1p and the nucleic Skn7 is denoted by
 +
      <b>
 +
        w(Yap1p:Skn7)
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The strong bond between the oxidized nucleic Yap1p and the nucleic Skn7 is denoted by s(Yap1p:Skn7).
+
       The strong bond between the oxidized nucleic Yap1p and the nucleic Skn7 is denoted by
 +
      <b>
 +
        s(Yap1p:Skn7)
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The kinase responsible for stabilizing the Yap1p : Skn7 bond is denoted by kinase.
+
       The kinase responsible for stabilizing the Yap1p : Skn7 bond is denoted by
 +
      <b>
 +
        kinase
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The degradation element NOT4 which is responsible for yap1p degradation in the nucleus is denoted by NOT4.
+
       The degradation element NOT4 which is responsible for yap1p degradation in the nucleus is denoted by
 +
      <b>
 +
        NOT4
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The active Yap1p marked for degradation in the nucleus via the NOT4 element is denoted by S(YAP1P:SKN7):NOT4.
+
       The active Yap1p marked for degradation in the nucleus via the NOT4 element is denoted by
 +
      <b>
 +
        S(YAP1P:SKN7):NOT4
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The complex of Yap1p and Skn7p that is bound to the promoter is denoted by protein_builder.
+
       The complex of Yap1p and Skn7p that is bound to the promoter is denoted by
 +
      <b>
 +
        protein_builder
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       The total amount of YFP is denoted by protein.
+
       The total amount of YFP is denoted by
 +
      <b>
 +
        protein
 +
      </b>
 +
      .
 
       </li>
 
       </li>
 
     </ul>
 
     </ul>
Line 367: Line 431:
 
     <ul class="justify" style="font-size:19px;">
 
     <ul class="justify" style="font-size:19px;">
 
       <li>
 
       <li>
       C1: The quantity of Yap1p transcription factor is constant. CO + NO + CR + NR = constant.
+
       C1: The kinase activity in the nucleus is constant.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
Line 394: Line 458:
 
     <ul style="list-style-type:upper-roman; font-size:19px;">
 
     <ul style="list-style-type:upper-roman; font-size:19px;">
 
       <li>
 
       <li>
       (Reaction 1) CR : PSE1P ⇒ NR. This reaction represents the transport of the transcription factor YAP1P from the cytoplasm into the nucleus with the help of the transporter Pse1p. We will use the expression pse1p_reduced to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 1)
 +
      </b>
 +
      CR : PSE1P ⇒ NR. This reaction represents the transport of the transcription factor YAP1P from the cytoplasm into the nucleus with the help of the transporter Pse1p. We will use the expression pse1p_reduced to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 2) NR : CRM1 ⇒ CR. As a regulatory mechanism for the YAP1P in the nucleus, the transporter (Crm1) exports the transcription factor outside of the nucleus. The reaction rate of this reaction will be denoted by Crm1.
+
       <b>
 +
        (Reaction 2)
 +
      </b>
 +
      NR : CRM1 ⇒ CR. As a regulatory mechanism for the YAP1P in the nucleus, the transporter (Crm1) exports the transcription factor outside of the nucleus. The reaction rate of this reaction will be denoted by Crm1.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 3) CO : PSE1P ⇒ NO. The YAP1P transcription factor can freely move from the cytoplasm into the nucleus through Pse1p transporter. This phase is not inhibited by oxidative stress. We will use pse1p_oxidised to denote the reaction rate of this reaction.
+
       <b>
 +
        (Reaction 3)
 +
      </b>
 +
      CO : PSE1P ⇒ NO. The YAP1P transcription factor can freely move from the cytoplasm into the nucleus through Pse1p transporter. This phase is not inhibited by oxidative stress. We will use pse1p_oxidised to denote the reaction rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 4) CR : GPX3 ⇒ CO. The YAP1P transcription factor binds to the protein GPX3 after it senses a bigger ROS quantity and gets oxidised. We will use Gpx3 to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 4)
 +
      </b>
 +
      CR : GPX3 ⇒ CO. The YAP1P transcription factor binds to the protein GPX3 after it senses a bigger ROS quantity and gets oxidised. We will use Gpx3 to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 5) CO ⇒ CR. This reaction represents the transcription factor getting reduced back once the ROS quantity decreases with the help of TRX. We will use Trx_cytoplasm to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 5)
 +
      </b>
 +
      CO ⇒ CR. This reaction represents the transcription factor getting reduced back once the ROS quantity decreases with the help of TRX. We will use Trx_cytoplasm to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 6) NO ⇒ NR. This reaction is equivalent to the one above, but it occurs in the nucleus, where the oxidised YAP1P gets reduced with the help of TRX. We will use Trx_nucleus to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 6)
 +
      </b>
 +
      NO ⇒ NR. This reaction is equivalent to the one above, but it occurs in the nucleus, where the oxidised YAP1P gets reduced with the help of TRX. We will use Trx_nucleus to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 7) NO + SKN7 ⇒ (NO:SKN7)w. This reaction depicts the weak binding of the nucleic oxidised Yap1p to the nucleic Skn7 transcription factor. We will use k1 to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 7)
 +
      </b>
 +
      NO + SKN7 ⇒ (NO:SKN7)w. This reaction depicts the weak binding of the nucleic oxidised Yap1p to the nucleic Skn7 transcription factor. We will use k1 to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 8) (NO:SKN7)w + kinase ⇒ (NO:SKN7)s. This reaction represents the strong bond between the nucleic oxidised Yap1p and the nucleic Skn7 transcription factors after the kinase binds to the weak bond. We will use kinase+ to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 8)
 +
      </b>
 +
      (NO:SKN7)w + kinase ⇒ (NO:SKN7)s. This reaction represents the strong bond between the nucleic oxidised Yap1p and the nucleic Skn7 transcription factors after the kinase binds to the weak bond. We will use kinase+ to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 9) S(NO:SKN7) + Construct ⇒ protein_builder . This is the binding reaction of the yap1p:skn7 complex to the binding site of the gene denoted by Construct. We will use Construct_binding to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 9)
 +
      </b>
 +
      S(NO:SKN7) + Construct ⇒ protein_builder . This is the binding reaction of the yap1p:skn7 complex to the binding site of the gene denoted by Construct. We will use Construct_binding to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 10) protein builder ⇒ S(NO:SKN7):NOT4 + Construct. This is representing the binding of the NOT4 species to the YAP1P/SKN7 complex which causes its separation from the gene. We will use Not4+ to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 10)
 +
      </b>
 +
      protein builder ⇒ S(NO:SKN7):NOT4 + Construct. This is representing the binding of the NOT4 species to the YAP1P/SKN7 complex which causes its separation from the gene. We will use Not4+ to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 11) CR ⇒ . This reaction represents the degradation of the YAP1P contained in the cytoplasm. We will use cr_deg+ to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 11)
 +
      </b>
 +
      CR ⇒ . This reaction represents the degradation of the YAP1P contained in the cytoplasm. We will use cr_deg+ to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 12) ⇒ CR. This reaction represents the production of YAP1P in the cytoplasm. We will use cr_prod to denote the rate of this reaction.
+
       <b>
 +
        (Reaction 12)
 +
      </b>
 +
      ⇒ CR. This reaction represents the production of YAP1P in the cytoplasm. We will use cr_prod to denote the rate of this reaction.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 13) ⇒ protein. This reaction represents the production of yellow fluorescent protein from the YAP1P/SKN7 complex bind to the promoter of the gene. The rate at which YFP is produced will be denoted by protein+.
+
       <b>
 +
        (Reaction 13)
 +
      </b>
 +
      ⇒ protein. This reaction represents the production of yellow fluorescent protein from the YAP1P/SKN7 complex bind to the promoter of the gene. The rate at which YFP is produced will be denoted by protein+.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 14) S(NO:SKN7):NOT4 ⇒ SKN7. This reaction represents the degradation of the oxidised YAP1P by the ubiquitin left by the NOT4. We will denote the rate of this reaction by ubiquitinb+.
+
       <b>
 +
        (Reaction 14)
 +
      </b>
 +
      S(NO:SKN7):NOT4 ⇒ SKN7. This reaction represents the degradation of the oxidised YAP1P by the ubiquitin left by the NOT4. We will denote the rate of this reaction by ubiquitinb+.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 15) YFP ⇒. This reaction represents the natural degradation of YFP. We will denote the rate of this reaction by YFP_deg.
+
       <b>
 +
        (Reaction 15)
 +
      </b>
 +
      YFP ⇒. This reaction represents the natural degradation of YFP. We will denote the rate of this reaction by YFP_deg.
 
       </li>
 
       </li>
 
     </ul>
 
     </ul>
Line 463: Line 572:
 
     <ul style="list-style-type:upper-roman; font-size:19px;">
 
     <ul style="list-style-type:upper-roman; font-size:19px;">
 
       <li>
 
       <li>
       (Reaction 1) C-Msn2/4p ⇒. This reaction represents the natural degradation of Msn2/4p.
+
       <b>
 +
        (Reaction 1)
 +
      </b>
 +
      C-Msn2/4p ⇒. This reaction represents the natural degradation of Msn2/4p.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 2) ⇒  C-Msn2/4p. This reaction represents the production of Msn2/4p in the cytoplasm.
+
       <b>
 +
        (Reaction 2)
 +
      </b>
 +
      ⇒  C-Msn2/4p. This reaction represents the production of Msn2/4p in the cytoplasm.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 3) C-Msn2/4p ⇒  N-Msn2/4p. This reaction represents the transportation of dephosphorylated Msn2/4p into the nucleus.
+
       <b>
 +
        (Reaction 3)
 +
      </b>
 +
      C-Msn2/4p ⇒  N-Msn2/4p. This reaction represents the transportation of dephosphorylated Msn2/4p into the nucleus.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 4) C-Msn2/4p : PKA ⇒ C-Msn2/4p_phos. This reaction represents the dephosphorylation of Msn2/4p by PKA.
+
       <b>
 +
        (Reaction 4)
 +
      </b>
 +
      C-Msn2/4p : PKA ⇒ C-Msn2/4p_phos. This reaction represents the dephosphorylation of Msn2/4p by PKA.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 5) C-Msn2/4p_phos : phosphatase ⇒ C-Msn2/4p. This reaction represents the phosphorylation of Msn2/4p by a phosphatase.
+
       <b>
 +
        (Reaction 5)
 +
      </b>
 +
      C-Msn2/4p_phos : phosphatase ⇒ C-Msn2/4p. This reaction represents the phosphorylation of Msn2/4p by a phosphatase.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 6) C-Msn2/4p_phos ⇒ N-Msn2/4p_phos. This reaction represents the transportation of Msn2/4p into the nucleus, inhibited by PKA/cAMP.
+
       <b>
 +
        (Reaction 6)
 +
      </b>
 +
      C-Msn2/4p_phos ⇒ N-Msn2/4p_phos. This reaction represents the transportation of Msn2/4p into the nucleus, inhibited by PKA/cAMP.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 7) N-Msn2/4p_phos ⇒ C-Msn2/4p_phos. This reaction represents the transportation of Msn2/4p into the nucleus, aided by Msn5p.
+
       <b>
 +
        (Reaction 7)
 +
      </b>
 +
      N-Msn2/4p_phos ⇒ C-Msn2/4p_phos. This reaction represents the transportation of Msn2/4p into the nucleus, aided by Msn5p.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 8) N-Msn2/4p_phos + Promoter ⇒ protein_builder. This reaction represents the binding of the nucleic phosphorylated Msn2/4p to the promoter.
+
       <b>
 +
        (Reaction 8)
 +
      </b>
 +
      N-Msn2/4p_phos + Promoter ⇒ protein_builder. This reaction represents the binding of the nucleic phosphorylated Msn2/4p to the promoter.
 
       </li>
 
       </li>
 
       <br/>
 
       <br/>
 
       <li>
 
       <li>
       (Reaction 9) protein_builder ⇒ Promoter. This reaction represents the natural degradation of Msn2/4p after it has served its purpose.
+
       <b>
 +
        (Reaction 9)
 +
      </b>
 +
      protein_builder ⇒ Promoter. This reaction represents the natural degradation of Msn2/4p after it has served its purpose.
 
       </li>
 
       </li>
 
     </ul>
 
     </ul>
Line 503: Line 639:
 
     <br/>
 
     <br/>
 
     <h4>
 
     <h4>
       Differential Equations of the Associated Mathematical Model of Yap1p:Skn7 Model
+
       Differential Equations of the Associated Mathematical Model of the Yap1p:Skn7 Molecular Model
 
     </h4>
 
     </h4>
 
     <br/>
 
     <br/>
Line 512: Line 648:
 
     <br/>
 
     <br/>
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
       <img src="/wiki/images/3/30/T--Aalto-Helsinki--diffequ.png" style="width:45%; height: 45%;"/>
+
       <img src="/wiki/images/0/00/T--Aalto-Helsinki--equations_yap.png" style="width:50%; height: 100%;"/>
 
       <figcaption style="text-align: center">
 
       <figcaption style="text-align: center">
 
       Figure 4. The differential equations associated to the molecular model.
 
       Figure 4. The differential equations associated to the molecular model.
Line 519: Line 655:
 
     <br/>
 
     <br/>
 
     <br/>
 
     <br/>
     <h4>
+
     <br/>
 +
    <br/>
 +
    </div>
 +
    <div class="sectionjee">
 +
    <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 +
      “
 +
      <i style="font-family: robotolight; font-size: 19px;">
 +
      We observe that as the rate of kinase activity lowers, the quantity of active genes approaches a smooth logarithmic curve
 +
      </i>
 +
      ”
 +
    </h2>
 +
    <br/>
 +
    <br/>
 +
    </div>
 +
    <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 +
    <h1 id="FOUR">
 
       Numerical simulations
 
       Numerical simulations
     </h4>
+
     </h1>
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
Line 535: Line 686:
 
     <br/>
 
     <br/>
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
       <img src="/wiki/images/c/c5/T--Aalto-Helsinki--plot5.png" style="width:50%; height: 50%;"/>
+
       <img src="/wiki/images/3/37/T--Aalto-Helsinki--plot1.png" style="width:50%; height: 50%;"/>
 
       <figcaption style="text-align: center">
 
       <figcaption style="text-align: center">
 
       Figure 5. The quantity of oxidised Yap1p:Skn7 complex in the nucleus after a kinase has stabilized the bond.
 
       Figure 5. The quantity of oxidised Yap1p:Skn7 complex in the nucleus after a kinase has stabilized the bond.
Line 549: Line 700:
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
       We modelled our active gene using a time course model directly dependent on the quantity of the S(NO:SKN7) complex. We plotted this active gene concentration with respect to time during stress, as shown in the figure 6. We note that the maximum quantity of active genes is determined by the minimum of Skn7p and promoter quantity in the cell. As one can observe in the figure 5, the quantity of active genes increases and stabilises at a nearly logarithmic rate, which depends on the promoter binding and kinase phosphorylation rates.
+
       We modelled our active gene using a time course model directly dependent on the quantity of the S(NO:SKN7) complex. We plotted this active gene concentration with respect to time during stress, as shown in figure 6. We note that the maximum quantity of active genes is determined by the minimum of Skn7p and promoter quantity in the cell. As one can observe in the figure 5, the quantity of active genes increases and stabilises at a nearly logarithmic rate, which depends on the promoter binding and kinase phosphorylation rates.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 565: Line 716:
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
       It is in our interest to determine the relation between the S(NO:SKN7) complex of Yap1p and Skn7 (in a strong bond) and the quantity of active genes present in the nucleus. Understanding this relation could shed some light into the degradation mechanisms of YAP1P during oxidative stress and the role of the kinase responsible for phosphorylating Skn7p. We observe that as the rate of kinase activity lowers, the quantity of active gene approaches a smooth logarithmic curve, suggesting a slower construct saturation and hence a faster linear stabilization of total protein being produced. At higher kinase activity rates, our active gene quantity experiences a faster initial slope and subsequent immediate decrease, followed by an increase and stabilization, as shown in the figure 7 below.
+
       It is in our interest to determine the relation between the S(NO:SKN7) complex of Yap1p and Skn7 (in a strong bond) and the quantity of active genes present in the nucleus. Understanding this relation could shed some light into the degradation mechanisms of YAP1P during oxidative stress and the role of the kinase responsible for phosphorylating Skn7p. We observe that as the rate of kinase activity lowers, the quantity of active genes approaches a smooth logarithmic curve, suggesting a slower construct saturation and hence a faster linear stabilization of total protein produced. At higher kinase activity rates, our active gene quantity experiences a faster initial slope and subsequent immediate decrease, followed by an increase and stabilization, as shown in figure 7 below.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 578: Line 729:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       This suggests a behaviour similar to the S(NO:SKN7) complex, where the role of the kinase is directly responsible for its quantity. We observe an increase in immediate gene activation in the form of S(NO:SKN7) complex together with a decrease on W(NO:SKN7) complex due to a high kinase activity. This explains the momentaneous decrease in S(NO:SKN7) complex as the NOT4 starts degradation and single oxidised Yap1p transcription factor in the nucleus concentration decreases relatively. This also suggests a fast activity and gene activation due to YAP1P transcription factor, followed by a more stable action during the course of stress.
+
       This suggests a behaviour similar to the S(NO:SKN7) complex, where the role of the kinase is directly responsible for quantity of active genes. We observe an increase in immediate gene activation in the form of S(NO:SKN7) complex and constructs together with a decrease on W(NO:SKN7) complex due to a high kinase activity. This explains the momentaneous decrease in S(NO:SKN7) complex as the Not4 starts degradation and single oxidised Yap1p transcription factor in the nucleus concentration experiences a relative decrease. This also suggests a fast activity and gene activation due to the mechanism of Yap1p transcription factor, followed by a more stable action during the course of stress.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
       Since we are interested in the overall Yellow Fluorescent Protein production in the nucleus, we plotted the total protein produced as a function of time during stress that is presented in the figure 8.
+
       Since we are interested in the overall Yellow Fluorescent Protein production in the nucleus, we plotted the total protein produced as a function of time during stress which is presented in figure 8.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 594: Line 745:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       In accordance to the previous plots, we observe a stabilised linear production of protein after the quantity of active constructs has reached its maximum. Before this threshold has been reached, we can observe a nearly exponential increase in protein production at the beginning of stress response. This behaviour was observed at both high and low kinase activity rates.
+
       In accordance to the previous plots, we observe a stabilised linear accumulation of produced of protein after the quantity of active constructs has reached its maximum. Before this threshold has been reached, we can observe a nearly exponential increase in protein quantity at the beginning of stress response. This behaviour was observed at both high and low kinase activity rates. It is also worth noting that the stabilized linear protein quantity will eventually become constant as the protein production stops. We observed this phenomenon as Yap1p production rates in the nucleus cannot keep up with the Not4 degradation rate, causing the Yap1p to nearly disappear in the nucleus and stopping its activation of target genes.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
Line 606: Line 757:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       We compared the active gene quantity as a function of the Not4 degradation activity of Yap1p while in complex form bind to the promoter part of the gene. We observed that as the Not4 activity increases, the active gene constructs quantity stabilize at different smaller values but preserves an overall same structure curve which resembles that of the  S(NO:SKN7) complex; consequently, we observe a lower initial slope in the protein production, which also stabilizes at a later period in time.
+
       We compared active gene quantity as a function of the Not4 degradation activity of Yap1p while in complex form bind to the promoter part of the gene. We observed that as the Not4 activity increases, the active gene constructs quantity stabilize at different smaller values but preserves an overall same structure curve which resembles that of the  S(NO:SKN7) complex; consequently, we observe a lower initial slope in the protein production, which also stabilizes at a later period in time.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
Line 613: Line 764:
 
       <br/>
 
       <br/>
 
       These results give support to the mechanism suggested at (Glushan et al. 2012) where YAP1P degradation occurs due to NOT4 activity inside the nucleus.
 
       These results give support to the mechanism suggested at (Glushan et al. 2012) where YAP1P degradation occurs due to NOT4 activity inside the nucleus.
      <br/>
 
      <br/>
 
      From these plots and results we can make several observations:
 
      <br/>
 
      <br/>
 
 
     </p>
 
     </p>
    <ul class="justify" style="font-size:19px;">
 
      <li>
 
      The overall behaviour of the active gene quantity is dependent on the transcription factor complex quantity and the total plasmids and binding sites contained in each cell, in particular on the minimum of these quantities.
 
      </li>
 
      <br/>
 
      <li>
 
      Once the active gene quantity reaches its threshold, protein production is maintained constant and increases at a linear function which is directly related to gene transcription rates in the cell.
 
      </li>
 
      <br/>
 
      <li>
 
      Yap1p and Skn7 seem to play a crucial role at the immediate response of the cell against oxidative stress.
 
      </li>
 
      <br/>
 
      <li>
 
      Not4 plays an important role in the long term stabilization of oxidised Yap1p in the nucleus and the overall long term stress response from the cell.
 
      </li>
 
      <br/>
 
      <li>
 
      Different quantities from Not4 degradation rate to kinase binding rate affect the overall protein production rate both at short and long term response.
 
      </li>
 
      <br/>
 
      <li>
 
      Next we would (1) fit the parameters to experimental data using COPASI’s parameter estimation function, (2) perform numerical simulations with MSN2/4p and (3) take the promoter structure into account in a more detailed way, possibly providing design suggestions.
 
      </li>
 
      <br/>
 
    </ul>
 
    <h4>
 
      Discussion and future work
 
    </h4>
 
 
     <br/>
 
     <br/>
    <p class="justify" style="font-size:19px;">
 
      From the above simulation results we can make several observations. The quantity of active genes depends on the quantity of the S(NO:SKN7) complex as well as the total number of promoter binding sites contained in each cell, in particular the minimum. Once the quantity of active genes reaches its maximum, protein production occurs at a constant rate and the amount of YFP increases linearly.
 
      <br/>
 
      <br/>
 
      Our model confirms that Yap1p and Skn7p seem to play a crucial role in the immediate response of the cell against oxidative stress. In addition, Not4 plays an important role in the long-term stabilization of the quantity of oxidised Yap1p in the nucleus and therefore also in the cell’s long-term response to oxidative stress. Altering the Not4 degradation rate and the kinase binding rate has large effects on the overall protein production rate. The simulations run in this model, support the Yap1p degradation mechanism based on Not4 activity suggested in the literature.
 
      <br/>
 
      <br/>
 
      The above presented model and simulations form a basis to a better understanding of the stress response mechanism in the cell via the Gpx3 increase and gene activation through transcription factors Yap1p and Skn7.
 
      <br/>
 
      <br/>
 
      In order to have a more accurate model of the response against oxidative stress in the cell and the fluorescence production we need to include the transcription MSN2/4p in our numerical simulations and then to fit our parameters to experimental FACS data using COPASI’s parameter estimation function. This would enable us to make more accurate numerical predictions of the behaviour of the detection mechanism under various conditions. We could then model the promoter structure in a more detailed way and use simulation results to guide the design of optimal promoters for our detection mechanism.
 
      <br/>
 
      <br/>
 
    </p>
 
 
     </div>
 
     </div>
    <br/>
 
 
     <div class="sectionjee">
 
     <div class="sectionjee">
     <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
+
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
+
       Our model supports the hypothesis that Yap1p and Skn7 play a crucial role in the immediate oxidative stress response of the cell
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 676: Line 778:
 
     <br/>
 
     <br/>
 
     </div>
 
     </div>
    <br/>
 
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
     <h2>
+
     <h1 id="FIVE">
 
       References
 
       References
     </h2>
+
     </h1>
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
Line 727: Line 828:
 
     <script src="./Tinyone - HTML_files/offcanvas.js"></script>
 
     <script src="./Tinyone - HTML_files/offcanvas.js"></script>
 
     <script src="./Tinyone - HTML_files/function.js"></script-->
 
     <script src="./Tinyone - HTML_files/function.js"></script-->
   <div class="navbar navbar-fixed-bottom navbar-default">
+
   <div class="navbar navbar-fixed-bottom navbar-default" style="text-align: center;">
   <ul class="botnav" style="padding-left: 32%;">
+
   <ul class="botnav" style="margin: 0 auto;">
 
     <progress id="progressbar" value="0">
 
     <progress id="progressbar" value="0">
 
     </progress>
 
     </progress>

Revision as of 20:55, 6 November 2016

Aalto-Helsinki

Modelling