Difference between revisions of "Team:Slovenia/Hardware"

(Undo revision 287192 by E Merljak (talk))
 
(77 intermediate revisions by 5 users not shown)
Line 7: Line 7:
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
 
             src="//2016.igem.org/Team:Slovenia/libraries/semantic-min-js?action=raw&ctype=text/javascript"></script>
     <link rel="stylesheet" type="text/css" href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
+
     <link rel="stylesheet" type="text/css"
     <script type="text/javascript" src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
+
          href="//2016.igem.org/Team:Slovenia/libraries/custom-css?action=raw&ctype=text/css">
 +
     <script type="text/javascript"
 +
            src="//2016.igem.org/Team:Slovenia/libraries/custom-js?action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
             src="//2016.igem.org/Team:Slovenia/libraries/zitator-js?action=raw&ctype=text/javascript"></script>
 
     <script type="text/javascript"
 
     <script type="text/javascript"
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
 
             src="https://2016.igem.org/Team:Slovenia/libraries/bibtexparse-js?action=raw&ctype=text/javascript"></script>
<!-- MathJax (LaTeX for the web) -->
 
    <script type="text/x-mathjax-config">
 
        MathJax.Hub.Config({
 
            tex2jax: {
 
                inlineMath: [['$', '$'], ['\\(', '\\)']]
 
            },
 
            jax: ["input/TeX","output/SVG"],
 
            TeX: {
 
                extensions: ["mhchem.js"],
 
                equationNumbers: {autoNumber: "all" },
 
                Macros: {
 
                  goodbreak: '\\mmlToken{mo}[linebreak="goodbreak"]{}',
 
                  badbreak: ['\\mmlToken{mo}[linebreak="badbreak"]{#1}',1],
 
                  nobreak: ['\\mmlToken{mo}[linebreak="nobreak"]{#1}',1],
 
                  invisibletimes: ['\\mmlToken{mo}{\u2062}']
 
                }
 
            },
 
            CommonHTML: { linebreaks: { automatic: true, width: "75% container" } },
 
            "HTML-CSS": { linebreaks: { automatic: true, width: "68% container" }},
 
            SVG: { linebreaks: { automatic: true, width: "200% container" }}
 
        });
 
    </script>
 
<script type="text/javascript" async
 
            src="//2016.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 
    </script>
 
 
</head>
 
</head>
 
<body>
 
<body>
 
 
<div id="example">
 
<div class="pusher">
 
<div class="full height">
 
<div class="banana">
 
<a href = "//2016.igem.org/Team:Slovenia">
 
<img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
 
</a>
 
<div class="ui vertical sticky text menu">
 
<a class="item" href="//2016.igem.org/Team:Slovenia/Software">
 
<i class="chevron circle left icon"></i>
 
<b>CaPTURE software</b>
 
</a>
 
<a class="item" href="#intro" style="margin-left: 10%">
 
<i class="selected radio icon"></i>
 
<b>MODUSON</b>
 
</a>
 
<a class="item" href="#basic" style="margin-left: 10%">
 
<i class="selected radio icon"></i>
 
<b>Realizations</b>
 
</a>
 
<a class="item" href="#evaluation" style="margin-left: 10%">
 
<i class="selected radio icon"></i>
 
<b>Evaluation of the device</b>
 
</a>
 
<a class="item" href="#setup" style="margin-left: 10%">
 
<i class="selected radio icon"></i>
 
<b>Set-up for experiments</b>
 
</a>
 
<a class="item" href="//2016.igem.org/Team:Slovenia/Model">
 
<i class="chevron circle right icon"></i>
 
<b>Ultrasound modeling</b>
 
</a>
 
 
</div>
 
 
</div>
 
<div class="article" id="context">
 
<!-- menu goes here -->
 
<!-- content goes here -->
 
<div class="main ui citing justified container">
 
<div>
 
<div class = "ui segment" style = "background-color: #ebc7c7; ">
 
<p><b><ul><li>
 
</ul></b></p>
 
</div>
 
 
<div class = "ui segment">
 
<p>The ultrasound (US) wave interacts with tissue and reflects back depending on the properties of the tissues such as velocity of sound in the tissue and its density, which can be modeled using <a href = "https://2016.igem.org/Team:Slovenia/Model">wave equation.</a> Higher frequencies have better resolution (shorter wavelengths) but cannot penetrate as deep into the tissues. In diagnostic ultrasound frequencies above 1 MHz are used. For better tissue penetration frequencies of interest for our purposes are between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time <x-ref>Speed2001</x-ref>. Latest studies show that it is possible to use pulsed ultrasound for neurostimulation, ultrasound therapy such as treatment of pain and the repair of various tissues, however without clear knowledge which receptors or cell types we are targeting, and what is the mechanism of the ultrasound stimulation effects <x-ref>Vasquez2014</x-ref>.</p>
 
 
</div>
 
<h1><span class="section">&nbsp;</span>Results</h1>
 
<div class = "ui segment">
 
<p>For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic baths (<ref>1</ref>) that are used to clean the laboratory equipment, small devices to clean jewelry or ultrasonic cell disruptors, which however offer little control over the intensity, frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor activation of mechanosensors under the fluorescence microscope. However, one member of the team is a student of electrical engineering and this was the right challenge for him.</p>
 
<div align = "center">
 
<figure data-ref="1">
 
<img class="ui large image" src=" " >
 
<figcaption><b>Different experiment configurations.</b><br/>
 
Testing homogeneity of pressure in each well with a plate immersed in the ultrasonic bath.
 
</figcaption>
 
</figure>
 
</div>
 
  
<p>For the generation of specific shapes of ultrasound pulses researchers usually use a setup consisting of two signal generators (one for switching on and off the train of US pulses and the other one to produce the sinusoidal signal of suitable frequency). This signal is further fed to the amplifier and then to the ultrasonic transducer. Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of the ultrasound. Usually a hydrophone is used in combination with an amplifier and an oscilloscope. This setup is complex to establish and difficult to use. Therefore, the goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop a device (named Moduson), which would be capable of providing appropriate signals required to perform specific ultrasonic experiments in a single apparatus and as such easy to use. The research and development of the device was performed in the Laboratory for Bioelectromagnetics/Faculty of Electrical Engineering/ University of Ljubljana under the advisor prof. Dejan Križaj and a company Noeto.</p>
+
<div id="example">
</div>
+
    <div class="pusher">
</div>
+
        <div class="full height">
<div>
+
            <div class="banana">
<h3><span id="basic" class="section">nbsp;</span>The basic requirements for the device and realizations</h3>
+
                <a href="//2016.igem.org/Team:Slovenia">
<div class = "ui segment">
+
                    <img class="ui medium sticky image" src="//2016.igem.org/wiki/images/d/d1/T--Slovenia--logo.png">
<h4>Adaptability</h4>
+
                </a>
+
                <div class="ui vertical sticky text menu">
<p>The device should be designed to be as flexible as possible in order to be capable of delivering a wide range and different shapes of stimulation signals to stimulate cells under the microscope, cells in a petri dish, cells in a microplate immersed into a bath and to stimulate animals. In order to fulfill this requirement we selected a dedicated embedded measurement card Red Pitaya acting as an embedded computer. This embedded device is based on Linux system and can be completely customized to the user’s needs. Furthermore, it can be Wi-Fi controlled so the final application is based on modern programming tools such as JavaScript, C++, Html, etc. The final application is basically a web page, accessible with any computer capable of the Wi-Fi connection. This application gives complete control of all stimulation parameters and operation of the device. Another advantage of the platform used its capability of simple integration with Matlab through so-called SCPI commands, usually used in the instrumentation for easy control and data acquisition making the device perfect research and development tool. Simple example of SCPI commands in Matlab for pulsed bursts is shown below:</p>
+
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Protease_signaling/Logic">
<div style="float:left;">  
+
                        <i class="chevron circle left icon"></i>
<figure data-ref="15">
+
                        <b>Logic</b>
<img class="ui medium image" src=" " >
+
                    </a>
<figcaption>
+
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Hardware" style = "color:#DB2828;">
</figcaption>
+
                        <i class="selected radio icon"></i>
</figure>
+
                        <b>Ultrasound</b> <br />
</div>
+
<b style="margin-left: 12%">controlling device</b>
+
                    </a>                   
<p>On the Figure <ref>2</ref> a typical sequence of a stimulation signal constructed of a set number of sine waves of defined frequency that is repeated for required number of times with selected repetition period is shown.</p>    
+
<a class="item" href="#ach" style="margin-left: 10%">
<div style = "float:left;">  
+
                        <i class="selected radio icon"></i>
<figure data-ref="2">
+
                        <b>Achievements</b>
<img class="ui medium image" src=" ">
+
                    </a>
<figcaption><b>Signal parameters.</b><br/>  
+
                    <a class="item" href="#mot" style="margin-left: 10%">
Parameters that can be set for a typical stimulation signal.
+
                        <i class="selected radio icon"></i>
</figcaption>
+
                        <b>Introduction</b>
</figure>
+
                    </a>
</div>
+
                    <a class="item" href="#mod" style="margin-left: 10%">
+
                        <i class="selected radio icon"></i>
<h4>Simple graphical user interface</h4>
+
                        <b>MODUSON</b>
<p>Users of the device do not need to be computer experts and do not need to have knowledge on the signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to design and develop a simple user-friendly graphical interface with all the relevant parameters that need to be set in order to run the experiments from the Web page. To accomplish this, dedicated software was written that enables users to design and run the experiment and evaluate the results. Figure <ref>3</ref> presents a developed user interface. On the right side (US burst settings -> STIMULATION PULSE) we can set parameters, such as the amplitude of the signal, frequency and number of sine waves. Below these settings, repetition parameters of the signal (PULSE REPETITION) such as the number of pulse repetitions and its frequency can be set. When all parameters are set, the signal can be previewed by clicking the SHOW BURST button. The pulse sequence is initiated with the START button. The acquired signal from hydrophone is seen on the main plot. At the top of the interface, there are options to export the image of a graph and csv data of the acquired signal. Chosen values of parameters can also be saved for the next use of the device.</p>
+
                    </a>
<div >  
+
                    <a class="item" href="#rel" style="margin-left: 10%">
<figure data-ref="5">
+
                        <i class="selected radio icon"></i>
<img class="ui medium image" src=" " >
+
                        <b>Realizations</b>
<figcaption><b>Application interface.</b><br/>
+
                    </a>
Web based interface used for setting of the signal parameters.
+
                    <a class="item" href="#eva" style="margin-left: 10%">
</figcaption>
+
                        <i class="selected radio icon"></i>
</figure>
+
                        <b>Evaluation</b>
</div>
+
                        <br/>
+
                        <b style="margin-left: 12%">of the device</b>
<h4>Signal amplifier</h4>
+
                    </a>
<p>Once a suitable signal is generated, it needs to be amplified from a signal level (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious engineering challenge. For this purpose, we first designed a circuitry on a conceptual level and simulated it with LT Spice (<ref>4</ref>). In the simulations an electric model of a transducer was considered as a combination of capacitors, inductors and resistors wired in parallel (<ref>5</ref>). This model enables simulation of ultrasonic transducers with several resonant frequencies. Simulations show that our device can reach the power at transducer around 92W, which is close to the measured 86W in the real system.</p>
+
                    <a class="item" href="#set" style="margin-left: 10%">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>Set-up</b>
 +
                        <br/>
 +
                        <b style="margin-left: 12%">for experiments</b>
 +
                    </a>
 +
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Model">
 +
                        <i class="chevron circle right icon"></i>
 +
                        <b>Modeling of ultrasound</b>
 +
                    </a>
 +
 
 +
                </div>
 +
 
 +
            </div>
 +
            <div class="article" id="context">
 +
                <!-- menu goes here -->
 +
                <!-- content goes here -->
 +
                <div class="main ui citing justified container">
 +
                    <div>
 +
                        <h1 class="ui left dividing header"><span id="ach" class="section colorize"> &nbsp; </span>Ultrasound
 +
                            controlling device</h1>
 +
                        <div class="ui segment" style="background-color: #ebc7c7; ">
 +
                            <ul>
 +
                                <li><b>Implementation of 90 W ultrasonic amplifier for pulsed cells stimulation.</b>
 +
                                <li><b>Optimization of the developed system in a given frequency range around 310 kHz.</b>
 +
                                <li><b>User friendly control interface of the device.</b>
 +
                                <li><b>Capability of providing 700 kPa of pressure 4 mm from ultrasonic transducer.</b>
 +
                            </ul>
 +
                        </div>
 +
                    </div>
 +
                    <div class="ui segment">
 +
                        <h4><span id="mot" class="section colorize">&nbsp;</span></h4>
 +
                        <p>The ultrasound (US) wave interacts with tissue and reflects back depending on the
 +
                            properties of the tissues such as velocity of sound in the tissues and its density, which
 +
                            can be modeled using <a href="https://2016.igem.org/Team:Slovenia/Model#mod">the wave
 +
                                equation.</a> Higher frequencies have better resolution (shorter wavelengths) but
 +
                            cannot penetrate as deep into the tissue. In diagnostic ultrasound frequencies above 1
 +
                            MHz are used. For better tissue penetration frequencies of interest for our purposes are
 +
                            between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time
 +
                            <x-ref>Speed2001</x-ref>. Latest studies show that it is possible to use pulsed ultrasound for neurostimulation,
 +
                            ultrasound therapy such as treatment of pain and the repair of various tissues, however
 +
                            without clear knowledge which receptors or cell types we are targeting, and what is the
 +
                            mechanism of the ultrasound stimulation effects
 +
                            <x-ref>Vasquez2014</x-ref>
 +
                            .
 +
                        </p>
 +
                    </div>
 +
                    <h1><span class="section colorize">&nbsp;</span>Results</h1>
 +
                    <div class="ui segment">
 +
                        <div>
 +
                            <h3><span id="mod" class="section colorize">&nbsp;</span>MODUSON - Generating ultrasonic power
 +
                                pulses for cell stimulation</h3>
 +
                            <p>For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic
 +
                                baths (<ref>1</ref>) for cleaning the laboratory equipment, small devices to clean jewelry or
 +
                                ultrasonic cell disruptors, which however offer little control over the intensity,
 +
                                frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor
 +
                                activation of mechanosensors under the fluorescence microscope. However, one member of
 +
                                the team is a student of electrical engineering and this was the right challenge for
 +
                                him.
 +
                            </p>
 +
                            <div style="float:right; width:100%">
 +
                                <figure data-ref="1">
 +
                                    <img src=" https://static.igem.org/mediawiki/2016/3/32/T--Slovenia--5.1.15.png">
 +
                                    <figcaption><b>Different experiment configurations.</b><br/>
 +
                                        <p style="text-align:justify">Different ultrasonic baths that are used to clean jewelry or labware were initially used to stimulate
 +
cells in microtiter plates. Those devices however do not allow a significant control of the intensity, frequency, pulse duration and repetitions.
 +
Homogeneity of pressure in each well with a plate immersed in the ultrasonic bath was tested with hydrophones and care was taken to maintain the
 +
temperature.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
 
 +
                            <p>For the generation of specific shapes of ultrasound pulses researchers usually use a
 +
                                setup consisting of two signal generators (one for switching on and off the train of US
 +
                                pulses and the other one to produce the sinusoidal signal of suitable frequency). This
 +
                                signal is further fed to the amplifier and then to the ultrasonic transducer.
 +
                                Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of
 +
                                the ultrasound. Usually a hydrophone is used in combination with an amplifier and an
 +
                                oscilloscope. This setup is complex to establish and difficult to use. Therefore, the
 +
                                goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop
 +
                                a device (named Moduson), which would be capable of providing appropriate signals
 +
                                required to perform specific ultrasonic experiments in a single apparatus and as such
 +
                                easy to use. The research and development of the device was performed in the Laboratory
 +
                                for Bioelectromagnetics at the Faculty of Electrical Engineering, University of
 +
                                Ljubljana under
 +
                                the supervision of prof. dr. Dejan Križaj and a company Noeto.</p>
 +
 
 +
                        </div>
 +
                        <div>
 +
                            <h3><span id="rel" class="section colorize">&nbsp;</span>The basic requirements for the device and
 +
                                realizations</h3>
 +
 
 +
                            <h5>Adaptability</h5>
 +
 
 +
                            <p>The device should be designed to be as flexible as possible in order to be capable of
 +
                                delivering a wide range and different shapes of stimulation signals to stimulate cells
 +
                                under the microscope, cells in a petri dish, cells in a microplate immersed into a bath
 +
                                and to stimulate animals. In order to fulfill this requirement we selected a dedicated
 +
                                embedded measurement card Red Pitaya acting as an embedded computer. This embedded
 +
                                device is based on Linux system and can be completely customized to the user’s needs.
 +
                                Furthermore, it can be Wi-Fi controlled so the final application is based on modern
 +
                                programming tools such as JavaScript, C++, HTML, etc. The final application is essentially
 +
                                a web page, accessible with any computer with a Wi-Fi connection. This
 +
                                application gives complete control over all stimulation parameters and operation of the
 +
                                device. Another advantage of the platform used is its capability of simple integration
 +
                                with
 +
                                Matlab through a so-called SCPI commands, usually used in the instrumentation for easy
 +
                                control and data acquisition making the device a perfect research and development tool.
 +
                                Simple example of SCPI commands in Matlab for pulsed bursts is shown below:</p>
 +
                            <div style="float:left; width:100%">
 +
                                <figure>
 +
                                    <img src=" https://static.igem.org/mediawiki/2016/b/b6/T--Slovenia--5.1.5.png">
 +
                                </figure>
 +
                            </div>
 +
 
 +
 
 +
                            <p style="clear:both">On the
 +
                                <ref>2</ref>
 +
                                a typical sequence of a stimulation signal constructed of a set number of sine waves of
 +
                                defined frequency that is repeated for required number of times with selected repetition
 +
                                period is shown.
 +
                            </p>
 +
                            <div style="float:left; width:100%">
 +
                                <figure data-ref="2">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/6/6e/T--Slovenia--5.1.6.png ">
 +
                                    <figcaption><b>Signal parameters.</b><br/>
 +
                                    Parameters that can be set for ultrasound stimulation signals of the MODUSON device.  
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
 
 +
                            <h5>Simple graphical user interface</h5>
 +
                            <p>Users of the device do not need to be computer experts and do not need to have knowledge
 +
                                on signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to
 +
                                design and develop a simple user-friendly graphical interface with all the relevant
 +
                                parameters that need to be set in order to run the experiments from the Web page. To
 +
                                accomplish this, dedicated software was written that enables users to design and run the
 +
                                experiment and evaluate the results.
 +
                                <ref>3</ref>
 +
                                presents a developed user interface. On the right side (US burst settings -> STIMULATION
 +
                                PULSE) we can set parameters, such as the amplitude of the signal, frequency and number
 +
                                of sine waves. Below these settings, repetition parameters of the signal (PULSE
 +
                                REPETITION) such as the number of pulse repetitions and its frequency can be set. When
 +
                                all parameters are set, the signal can be previewed by clicking the SHOW BURST button.
 +
                                The pulse sequence is initiated with the START button. The acquired signal from
 +
                                hydrophone is seen on the main plot. At the top of the interface, there are options to
 +
                                export the image of a graph and csv data of the acquired signal. Chosen values of
 +
                                parameters can also be saved for the next use of the device.
 +
                            </p>
 +
                            <div style="float:left; width:50%">
 +
                                <figure data-ref="3">
 +
                                    <img onclick="resize(this);"
 +
                                        src=" https://static.igem.org/mediawiki/2016/b/bf/T--Slovenia--5.1.7.png">
 +
                                    <figcaption><b>Screenshot of the MODUSON control interface.</b><br/>
 +
                                        <p style="text-align:justify">Web based interface is used to set the ultrasound signal parameters on the Moduson device that is controlled by the Red Pitaya card.
 +
</p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
 
 +
                            <h5 style="clear:both">Signal amplifier</h5>
 +
 
 +
                            <div style="width: 50%; float:left;">
 +
                                <figure data-ref="4">
 +
                                    <img class="ui medium image" onclick="resize(this);"
 +
                                        src=" https://static.igem.org/mediawiki/2016/7/7e/T--Slovenia--5.1.8.png">
 +
                                    <figcaption><b>Simulation scheme of the electrical circuit to generate pulses for the ultrasound transducer.</b><br/>
 +
                                        <p style="text-align:justify">Electric circuit scheme used in LT Spice simulations to set the parameters to build the ultrasound stimulation device.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
                            <div style="width: 50%; float:left;">
 +
                                <figure data-ref="5">
 +
                                    <img class="ui medium image" onclick="resize(this);"
 +
                                        src="https://static.igem.org/mediawiki/2016/3/3b/T--Slovenia--5.1.9.png ">
 +
                                    <figcaption><b>Model of the transducer functional at several resonant frequencies used for the simulation.</b><br/>
 +
                                        <p style="text-align:justify">Equivalent model of ultrasonic transducer based on a BVD model that was simulated to provide 92 W of power.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
                           
 +
                            <p style="clear:both;"></p>
 +
                            <p>We built the circuitry with real elements on a prototype board where several additional
 +
                                alterations were required, as the real elements do not have ideal characteristics as the
 +
                                ones included in the simulation (<ref>7</ref>). Another challenge was the design of a suitable
 +
                                transformer to increase the voltage amplitude of the signal. The transformer is also
 +
                                required to operate as an impedance transformer. Lowering impedance of the ultrasonic
 +
                                transducer enables higher current levels and consequently higher power values.</p>
 +
                          <div style="width:70%; margin-left:auto; margin-right:auto;">
 +
                                <figure data-ref="6">
 +
                                    <img
 +
                                        src=" https://static.igem.org/mediawiki/2016/0/0a/T--Slovenia--5.1.10.png">
 +
                                    <figcaption><b>Final look of the Moduson device from the inside and outside.</b><br/>
 +
                                        <p style="text-align:justify">Constructed device was equipped with a simple interface; an ON/OFF button, a BNC output for the
 +
transducer and a button to trigger stimulation pulses. All parameters are set by the Web interface that also provides the ability
 +
to trigger the stimulation pulses. When we have more time we will develop a new version with more neatly arranged wiring.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
 
 +
  <p>Once a suitable signal is generated, it needs to be amplified from a signal level
 +
                                (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious
 +
                                engineering challenge. For this purpose, we first designed a circuitry on a conceptual
 +
                                level and simulated it with LT Spice (<ref>4</ref>). In the simulations an electric model of a transducer was considered as a combination
 +
                                of capacitors, inductors and resistors wired in parallel (<ref>5</ref>). This model enables simulation of ultrasonic transducers with several resonant
 +
                                frequencies. Simulations show that our device can reach the power at transducer around
 +
                                92W, which is close to the measured 86W in the real system.
 +
                            </p>
 +
                        </div>
 +
                        <div>
 +
                            <h3><span id="eva" class="section colorize">nbsp;</span>Evaluation of the developed device
 +
                            </h3>
 +
 
 +
                            <p>Functionality of the Moduson was first tested without any connected load.
 +
                                <ref>7</ref>
 +
                                presents a typical output measured with an oscilloscope for a signal of frequency 310
 +
                                kHz.
 +
                            </p>
 +
 
 +
                            <div style="float:left; width:100%">
 +
                                <figure data-ref="7">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/5/58/T--Slovenia--5.1.2.png ">
 +
                                    <figcaption><b>MODUSON output signal without load</b><br/>
 +
                                        <p style="text-align:justify">Typical output signal is shown, detected by te oscilloscope, where the amplitude of the acquired signal depends
 +
on the winding of the transformer.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
 +
 
 +
                            <p>Developed device was tested with several transducers with resonance frequencies ranging
 +
                                from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer
 +
                                Olympus V318-SU (<ref>8</ref>) with a waterproof case, allowing it to be used in <i>in vitro</i> experiments.
 +
                            </p>
  
<div style="float:left;">  
+
                            <div style="float:left; width:50%">
<figure data-ref="4">
+
                                <figure data-ref="8">
<img class="ui medium image" src=" " >
+
                                    <img src="https://static.igem.org/mediawiki/2016/f/fe/T--Slovenia--5.1.11.png ">
<figcaption><b>Simulation scheme.</b><br/>
+
                                    <figcaption><b>Ultrasound transducer V318-SU.</b><br/>
Scheme used in LT Spice simulations.
+
                                        <p style="text-align:justify">Handy waterproof case of the transducer connected to MODUSON allowed us to use this transducer in most experiments.
</figcaption>
+
                                        </p>
</figure>
+
                                    </figcaption>
</div>
+
                                </figure>
 +
                            </div>
 +
                            <div style="float:left; width:50%">
 +
                                <figure data-ref="9">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/2/2e/T--Slovenia--5.1.4.png ">
 +
                                    <figcaption><b>Electric power of ultrasonic transducer before and after
 +
                                        compensation.</b><br/>
 +
                                        <p style="text-align:justify">Few additional electronic tweaks improved the performance of the device. Electrical power with compensation was significantly
 +
increased with serial compensation.</p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
<div style = "float:left;">
 
<figure data-ref="5">
 
<img class="ui medium image" src=" " >
 
<figcaption><b>Model of transducer.</b><br/>
 
Equivalent model of ultrasonic transducer based on a BVD model.
 
</figcaption>
 
</figure>
 
</div>
 
  
<p>We built the circuitry with real elements on a prototype board where several additional alterations were required, as the real elements do not have ideal characteristics as the ones included in the simulation. Another challenge was the design of a suitable transformer to increase the voltage amplitude of the signal. The transformer is also required to operate as an impedance transformer. Lowering impedance of the ultrasonic transducer enables higher current levels and consequently higher power values.</p>
+
                            <p>
 +
                                <ref>9</ref>
 +
                                presents measured electric power using the transducer V318-SU. After partial
 +
                                compensation of reactive part, the measured real power reached 86 W. This result
 +
                                exceeded the set requirements.
 +
                            </p>
  
<div style="float:left">  
+
                            <p>With compensation, voltage was considerably increased at contacts of transducer and
<figure data-ref="6">
+
                                reached around 900 Vpp as shown in
<img class="ui medium image" src = " ">
+
                                <ref>10</ref>
<figcaption><b>Moduson.</b><br/>
+
                                .
Constructed device with a simple interface; an ON/OFF button, a BNC output for the transducer and a button to trigger stimulation pulses. The pulses can also be triggered directly through the Web interface.
+
                            </p>
</figcaption>
+
                            <div style="float:left; width:100%">
</figure>
+
                                <figure data-ref="10">
</div>
+
                                    <img src="https://static.igem.org/mediawiki/2016/3/3d/T--Slovenia--5.1.1.png ">
<p style = "clear:both;">
+
                                    <figcaption><b>Voltage at input of a transducer V318-SU.</b><br/>
</p>
+
                                        <p style="text-align:justify">Transducer requires relative high voltage to operate properly and produce the required pulse sequences.
</div>
+
                                        </p>
</div>
+
                                    </figcaption>
<div>
+
                                </figure>
<h3><span id="evaluation" class="section">nbsp;</span>Evaluation of the developed device</h3>
+
                            </div>
<div class = "ui segment">
+
<p>Functionality of the Moduson was first tested without any connected load. Figure <ref>7</ref> presents a typical output measured with an oscilloscope for a signal of frequency 310 kHz.</p>
+
  
<div style="float:left;">  
+
                            <p>We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in
<figure data-ref="7">
+
                                <ref>11</ref>
<img class="ui medium image" src = " ">
+
                                . This hydrophone has a sensitivity of 50 mV/100 kPa at a frequency of 310 kHz. It can be
<figcaption><b>Typical output signal without load.</b><br/>
+
                                connected directly to the oscilloscope input to detect the pressure of the ultrasonic
Amplitude of acquired signal depends on the winding of transformer.
+
                                waves. Pressure measured 4 mm from the transducer reached 700 kPa which gives the
</figcaption>
+
                                intensity of 33 W/cm<sup>2<sup>.</p>
</figure>
+
</div>
+
+
<p>Developed device was tested with several transducers with resonance frequencies ranging from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer Olympus V318-SU (<ref>8</ref>) with a waterproof case, allowing it to be used in in vitro experiments.</p>
+
  
<div style="float:left;">  
+
                            <div style="float:left; width:50%">
<figure data-ref="8">
+
                                <figure data-ref="11">
<img class="ui medium image" src = " ">
+
                                    <img src="https://static.igem.org/mediawiki/2016/e/e5/T--Slovenia--5.1.12.png ">
<figcaption><b>Ultrasound transducer V318-SU.</b><br/>
+
                                    <figcaption><b>Hydrophone RP 31l.</b><br/>
Handy waterproof case allowed us to use the transducer in most experiments.
+
                                        <p style="text-align:justify">Calibrated hydrophone was used to measure pressure in different experiments in order to determine the power
</figcaption>
+
attenuation due to the absorbance of the plate, different geometry and ultrasound signal generation.
</figure>
+
                                        </p>
</div>
+
                                    </figcaption>
 +
                                </figure>
 +
                            </div>
  
<p>Figure <ref>9</ref> presents measured electric power using the transducer V318-SU. After partial compensation of reactive part, the measured real power reached 86 W. This result exceeded the set requirements.</p>
+
                            <p style="clear:both">Example of an output signal measured by a hydrophone is presented in
<div style="float:left;">  
+
                                the
<figure data-ref="9">
+
                                <ref>12</ref>
<img class="ui medium image" src=" " >
+
                                .
<figcaption><b>Electric power of ultrasonic transducer before and after compensation.</b><br/>
+
                            <p>
Electrical power with compensation was significantly increased with serial compensation.
+
</figcaption>
+
</figure>
+
</div>
+
  
<p>With compensation, voltage was considerably increased at contacts of transducer and reached around 900Vpp as shown in Figure <ref>10</ref>.</p>
+
                                <div style="float:left; width:100%">
<div style="float:left;">  
+
                                    <figure data-ref="12">
<figure data-ref="10">
+
                                        <img src=" https://static.igem.org/mediawiki/2016/b/b8/T--Slovenia--5.1.3.png">
<img class="ui medium image" src=" " >  
+
                                        <figcaption><b>Voltage signal detected using the hydrophone.</b><br/>
<figcaption><b>Voltage at input of a transducer V318-SU.</b><br/>
+
                            <p style="text-align:justify">Based on calibration data of the hydrophone, we can determine pressure for each experimental setup, which corresponds to the acquired
Transducer requires relative high voltage to operate properly.
+
voltage amplitude.  
</figcaption>
+
                            </p>
</figure>
+
                            </figcaption>
</div>
+
                            </figure>
 +
                        </div>
 +
                        <p style="clear:both;">
 +
                        </p>
 +
                    </div>
 +
                    <div>
 +
                        <h3><span id="set" class="section colorize">nbsp;</span>Set-up for experiments with ultrasonic
 +
                            pulses</h3>
  
<p>We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in Figure <ref>11</ref>. This hydrophone has a sensitivity of 50mV/100kPa at a frequency of 310kHz. It can be connected directly to the oscilloscope input to detect the pressure of the ultrasonic waves. Pressure measured 4 mm from the transducer reached 7 kPa which gives the intensity of 33 W/cm<sup>2<sup>.</p>
+
                        <p>After we successfully tested the Moduson device, we aimed to design measurement set-up
 +
                            for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of
 +
                            the ultrasound transducer. In order to ensure repeatable conditions in every experiment
 +
                            the position of a transducer was fixed with a suitable holder. Several models of holders
 +
                            were designed for different experimental configurations and a 3D-printer was used to
 +
                            fabricate a dedicated holder (<ref>13</ref>). This allowed positioning of the transducer at the fixed height above the bottom of a
 +
                            well (<ref>14</ref>), which was crucial due to the series of maximal and minimal intensity of generated
 +
                            pressure.
 +
                        <p>
 +
                            <div style="float:left; width:50%">
 +
                                <figure data-ref="13">
 +
                                    <img src="https://static.igem.org/mediawiki/2016/8/88/T--Slovenia--5.1.13.png ">
 +
                                    <figcaption><b>3D printing of the assembly of the cell microplate holder for the ultrasound device.</b><br/>
 +
                        <p style="text-align:justify">A holder for the accurate positioning of the ultrasonic transducer for a 6-well microtiter plate was constructed by a 3D printer.  
 +
                        </p>
 +
                        </figcaption>
 +
                        </figure>
 +
                    </div>
  
<div style="float:left;">  
+
                    <div style="float:left; width:50%">
<figure data-ref="11">
+
                        <figure data-ref="14">
<img class="ui medium image" src=" " >
+
                            <img src=" https://static.igem.org/mediawiki/2016/e/ea/T--Slovenia--5.1.14.png">
<figcaption><b>Hydrophone RP 31l.</b><br/>
+
                            <figcaption><b>Setup of the ultrasound based experiments on the fluorescence microscope.</b><br/>
Calibrated hydrophone used to measure pressure.
+
                                <p style="text-align:justify">Ultrasonic transducer was immersed into the medium above cells using a 3D printed holder in a 6-well plate. Calcium
</figcaption>
+
influx was measured in the real time using the ratio of two Ca-dependent fluorescent dyes and analyzed using software CaPTURE developed for the project.
</figure>
+
                                </p>
</div>
+
                            </figcaption>
+
                        </figure>
<p style = "background-color: #ff6666;">Example of an output signal measured by a hydrophone is presented in the Figure  <ref>12</ref>.<p>
+
                    </div>
  
<div style="float:left;">
+
                    <p style="clear:both;">
<figure data-ref="12">
+
                    </p>
<img class="ui medium image" src=" " >
+
                </div>
<figcaption><b>Voltage signal detected using the hydrophone.</b><br/>
+
            </div>
With calibration data, we can determine pressure which corresponds to acquired voltage amplitude.
+
</figcaption>
+
</figure>
+
</div>
+
<p style = "clear:both;">
+
</p>
+
</div>
+
</div>
+
<div>
+
<h3><span id="setup" class="section">nbsp;</span>Set-up for experiments with ultrasonic pulses</h3>
+
<div class = "ui segment">
+
<p>After we successfully tested the Moduson device, we aimed to design measurement set-up for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of the ultrasound transducer. In order to ensure repeatable conditions in every experiment the position of a transducer was fixed with a suitable holder. Several models of holders were designed for different experimental configurations and a 3D-printer was used to fabricate a dedicated holder (<ref>13</ref>). This allowed positioning of the transducer at the fixed height above the bottom of a well, which was crucial due to the series of maximal and minimal intensity of generated pressure.<p>
+
<div style="float:left;">
+
<figure data-ref="13">
+
<img class="ui medium image" src=" " >
+
<figcaption><b>3D printer.</b><br/>
+
Printing a holder for the ultrasonic transducer that we used for a 6-well plate.
+
</figcaption>
+
</figure>
+
</div>
+
  
<div style="float:left;">  
+
            <h3 class="ui left dividing header"><span id="ref-title" class="section colorize">&nbsp;</span>References
<figure data-ref="14">
+
            </h3>
<img class="ui medium image" src=" " >
+
            <div class="ui segment citing" id="references"></div>
<figcaption><b>Ultrasound based experiments on the microscope.</b><br/>
+
        </div>
Ultrasonic transducer with a 3D printed holder in a 6-well plate.
+
    </div>
</figcaption>
+
</div>
</figure>
+
<div>
</div>  
+
    <a href="//igem.org/Main_Page">
+
        <img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%"
<p style = "clear:both;">
+
            style="position: fixed; bottom:0%; right:1%;">
</p>
+
    </a>
</div>
+
</div>
</div>
+
</div>
+
</div>
+
</div>
+
</div>
+
</div>
+
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 20:47, 8 November 2016

Hardware

  Ultrasound controlling device

  • Implementation of 90 W ultrasonic amplifier for pulsed cells stimulation.
  • Optimization of the developed system in a given frequency range around 310 kHz.
  • User friendly control interface of the device.
  • Capability of providing 700 kPa of pressure 4 mm from ultrasonic transducer.

 

The ultrasound (US) wave interacts with tissue and reflects back depending on the properties of the tissues such as velocity of sound in the tissues and its density, which can be modeled using the wave equation. Higher frequencies have better resolution (shorter wavelengths) but cannot penetrate as deep into the tissue. In diagnostic ultrasound frequencies above 1 MHz are used. For better tissue penetration frequencies of interest for our purposes are between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time Speed2001. Latest studies show that it is possible to use pulsed ultrasound for neurostimulation, ultrasound therapy such as treatment of pain and the repair of various tissues, however without clear knowledge which receptors or cell types we are targeting, and what is the mechanism of the ultrasound stimulation effects Vasquez2014 .

 Results

 MODUSON - Generating ultrasonic power pulses for cell stimulation

For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic baths (1) for cleaning the laboratory equipment, small devices to clean jewelry or ultrasonic cell disruptors, which however offer little control over the intensity, frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor activation of mechanosensors under the fluorescence microscope. However, one member of the team is a student of electrical engineering and this was the right challenge for him.

Different experiment configurations.

Different ultrasonic baths that are used to clean jewelry or labware were initially used to stimulate cells in microtiter plates. Those devices however do not allow a significant control of the intensity, frequency, pulse duration and repetitions. Homogeneity of pressure in each well with a plate immersed in the ultrasonic bath was tested with hydrophones and care was taken to maintain the temperature.

For the generation of specific shapes of ultrasound pulses researchers usually use a setup consisting of two signal generators (one for switching on and off the train of US pulses and the other one to produce the sinusoidal signal of suitable frequency). This signal is further fed to the amplifier and then to the ultrasonic transducer. Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of the ultrasound. Usually a hydrophone is used in combination with an amplifier and an oscilloscope. This setup is complex to establish and difficult to use. Therefore, the goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop a device (named Moduson), which would be capable of providing appropriate signals required to perform specific ultrasonic experiments in a single apparatus and as such easy to use. The research and development of the device was performed in the Laboratory for Bioelectromagnetics at the Faculty of Electrical Engineering, University of Ljubljana under the supervision of prof. dr. Dejan Križaj and a company Noeto.

 The basic requirements for the device and realizations

Adaptability

The device should be designed to be as flexible as possible in order to be capable of delivering a wide range and different shapes of stimulation signals to stimulate cells under the microscope, cells in a petri dish, cells in a microplate immersed into a bath and to stimulate animals. In order to fulfill this requirement we selected a dedicated embedded measurement card Red Pitaya acting as an embedded computer. This embedded device is based on Linux system and can be completely customized to the user’s needs. Furthermore, it can be Wi-Fi controlled so the final application is based on modern programming tools such as JavaScript, C++, HTML, etc. The final application is essentially a web page, accessible with any computer with a Wi-Fi connection. This application gives complete control over all stimulation parameters and operation of the device. Another advantage of the platform used is its capability of simple integration with Matlab through a so-called SCPI commands, usually used in the instrumentation for easy control and data acquisition making the device a perfect research and development tool. Simple example of SCPI commands in Matlab for pulsed bursts is shown below:

On the 2 a typical sequence of a stimulation signal constructed of a set number of sine waves of defined frequency that is repeated for required number of times with selected repetition period is shown.

Signal parameters.
Parameters that can be set for ultrasound stimulation signals of the MODUSON device.
Simple graphical user interface

Users of the device do not need to be computer experts and do not need to have knowledge on signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to design and develop a simple user-friendly graphical interface with all the relevant parameters that need to be set in order to run the experiments from the Web page. To accomplish this, dedicated software was written that enables users to design and run the experiment and evaluate the results. 3 presents a developed user interface. On the right side (US burst settings -> STIMULATION PULSE) we can set parameters, such as the amplitude of the signal, frequency and number of sine waves. Below these settings, repetition parameters of the signal (PULSE REPETITION) such as the number of pulse repetitions and its frequency can be set. When all parameters are set, the signal can be previewed by clicking the SHOW BURST button. The pulse sequence is initiated with the START button. The acquired signal from hydrophone is seen on the main plot. At the top of the interface, there are options to export the image of a graph and csv data of the acquired signal. Chosen values of parameters can also be saved for the next use of the device.

Screenshot of the MODUSON control interface.

Web based interface is used to set the ultrasound signal parameters on the Moduson device that is controlled by the Red Pitaya card.

Signal amplifier
Simulation scheme of the electrical circuit to generate pulses for the ultrasound transducer.

Electric circuit scheme used in LT Spice simulations to set the parameters to build the ultrasound stimulation device.

Model of the transducer functional at several resonant frequencies used for the simulation.

Equivalent model of ultrasonic transducer based on a BVD model that was simulated to provide 92 W of power.

We built the circuitry with real elements on a prototype board where several additional alterations were required, as the real elements do not have ideal characteristics as the ones included in the simulation (7). Another challenge was the design of a suitable transformer to increase the voltage amplitude of the signal. The transformer is also required to operate as an impedance transformer. Lowering impedance of the ultrasonic transducer enables higher current levels and consequently higher power values.

Final look of the Moduson device from the inside and outside.

Constructed device was equipped with a simple interface; an ON/OFF button, a BNC output for the transducer and a button to trigger stimulation pulses. All parameters are set by the Web interface that also provides the ability to trigger the stimulation pulses. When we have more time we will develop a new version with more neatly arranged wiring.

Once a suitable signal is generated, it needs to be amplified from a signal level (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious engineering challenge. For this purpose, we first designed a circuitry on a conceptual level and simulated it with LT Spice (4). In the simulations an electric model of a transducer was considered as a combination of capacitors, inductors and resistors wired in parallel (5). This model enables simulation of ultrasonic transducers with several resonant frequencies. Simulations show that our device can reach the power at transducer around 92W, which is close to the measured 86W in the real system.

nbsp;Evaluation of the developed device

Functionality of the Moduson was first tested without any connected load. 7 presents a typical output measured with an oscilloscope for a signal of frequency 310 kHz.

MODUSON output signal without load

Typical output signal is shown, detected by te oscilloscope, where the amplitude of the acquired signal depends on the winding of the transformer.

Developed device was tested with several transducers with resonance frequencies ranging from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer Olympus V318-SU (8) with a waterproof case, allowing it to be used in in vitro experiments.

Ultrasound transducer V318-SU.

Handy waterproof case of the transducer connected to MODUSON allowed us to use this transducer in most experiments.

Electric power of ultrasonic transducer before and after compensation.

Few additional electronic tweaks improved the performance of the device. Electrical power with compensation was significantly increased with serial compensation.

9 presents measured electric power using the transducer V318-SU. After partial compensation of reactive part, the measured real power reached 86 W. This result exceeded the set requirements.

With compensation, voltage was considerably increased at contacts of transducer and reached around 900 Vpp as shown in 10 .

Voltage at input of a transducer V318-SU.

Transducer requires relative high voltage to operate properly and produce the required pulse sequences.

We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in 11 . This hydrophone has a sensitivity of 50 mV/100 kPa at a frequency of 310 kHz. It can be connected directly to the oscilloscope input to detect the pressure of the ultrasonic waves. Pressure measured 4 mm from the transducer reached 700 kPa which gives the intensity of 33 W/cm2.

Hydrophone RP 31l.

Calibrated hydrophone was used to measure pressure in different experiments in order to determine the power attenuation due to the absorbance of the plate, different geometry and ultrasound signal generation.

Example of an output signal measured by a hydrophone is presented in the 12 .

Voltage signal detected using the hydrophone.

Based on calibration data of the hydrophone, we can determine pressure for each experimental setup, which corresponds to the acquired voltage amplitude.

nbsp;Set-up for experiments with ultrasonic pulses

After we successfully tested the Moduson device, we aimed to design measurement set-up for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of the ultrasound transducer. In order to ensure repeatable conditions in every experiment the position of a transducer was fixed with a suitable holder. Several models of holders were designed for different experimental configurations and a 3D-printer was used to fabricate a dedicated holder (13). This allowed positioning of the transducer at the fixed height above the bottom of a well (14), which was crucial due to the series of maximal and minimal intensity of generated pressure.

3D printing of the assembly of the cell microplate holder for the ultrasound device.

A holder for the accurate positioning of the ultrasonic transducer for a 6-well microtiter plate was constructed by a 3D printer.

Setup of the ultrasound based experiments on the fluorescence microscope.

Ultrasonic transducer was immersed into the medium above cells using a 3D printed holder in a 6-well plate. Calcium influx was measured in the real time using the ratio of two Ca-dependent fluorescent dyes and analyzed using software CaPTURE developed for the project.

 References