Difference between revisions of "Team:Slovenia/Hardware"

 
(36 intermediate revisions by 5 users not shown)
Line 17: Line 17:
 
</head>
 
</head>
 
<body>
 
<body>
 
  
 
<div id="example">
 
<div id="example">
Line 27: Line 26:
 
                 </a>
 
                 </a>
 
                 <div class="ui vertical sticky text menu">
 
                 <div class="ui vertical sticky text menu">
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Software">
+
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Protease_signaling/Logic">
 
                         <i class="chevron circle left icon"></i>
 
                         <i class="chevron circle left icon"></i>
                         <b>CaPTURE software</b>
+
                         <b>Logic</b>
 +
                    </a>
 +
                    <a class="item" href="//2016.igem.org/Team:Slovenia/Hardware" style = "color:#DB2828;">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>Ultrasound</b> <br />
 +
<b style="margin-left: 12%">controlling device</b>
 +
                    </a>                   
 +
<a class="item" href="#ach" style="margin-left: 10%">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>Achievements</b>
 +
                    </a>
 +
                    <a class="item" href="#mot" style="margin-left: 10%">
 +
                        <i class="selected radio icon"></i>
 +
                        <b>Introduction</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#intro" style="margin-left: 10%">
+
                     <a class="item" href="#mod" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
 
                         <b>MODUSON</b>
 
                         <b>MODUSON</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#basic" style="margin-left: 10%">
+
                     <a class="item" href="#rel" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
 
                         <b>Realizations</b>
 
                         <b>Realizations</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#evaluation" style="margin-left: 10%">
+
                     <a class="item" href="#eva" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Evaluation of the device</b>
+
                         <b>Evaluation</b>
 +
                        <br/>
 +
                        <b style="margin-left: 12%">of the device</b>
 
                     </a>
 
                     </a>
                     <a class="item" href="#setup" style="margin-left: 10%">
+
                     <a class="item" href="#set" style="margin-left: 10%">
 
                         <i class="selected radio icon"></i>
 
                         <i class="selected radio icon"></i>
                         <b>Set-up for experiments</b>
+
                         <b>Set-up</b>
 +
                        <br/>
 +
                        <b style="margin-left: 12%">for experiments</b>
 
                     </a>
 
                     </a>
 
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Model">
 
                     <a class="item" href="//2016.igem.org/Team:Slovenia/Model">
 
                         <i class="chevron circle right icon"></i>
 
                         <i class="chevron circle right icon"></i>
                         <b>Ultrasound modeling</b>
+
                         <b>Modeling of ultrasound</b>
 
                     </a>
 
                     </a>
  
Line 59: Line 75:
 
                 <!-- content goes here -->
 
                 <!-- content goes here -->
 
                 <div class="main ui citing justified container">
 
                 <div class="main ui citing justified container">
 
 
                     <div>
 
                     <div>
                         <h1 class="ui left dividing header"><span id="intro" class="section"> &nbsp; </span>Ultrasound
+
                         <h1 class="ui left dividing header"><span id="ach" class="section colorize"> &nbsp; </span>Ultrasound
 
                             controlling device</h1>
 
                             controlling device</h1>
 
                         <div class="ui segment" style="background-color: #ebc7c7; ">
 
                         <div class="ui segment" style="background-color: #ebc7c7; ">
 
                             <ul>
 
                             <ul>
                                 <li><b></b>
+
                                 <li><b>Implementation of 90 W ultrasonic amplifier for pulsed cells stimulation.</b>
                                 <li><b></b>
+
                                 <li><b>Optimization of the developed system in a given frequency range around 310 kHz.</b>
                                 <li><b></b>
+
                                 <li><b>User friendly control interface of the device.</b>
                                 <li><b></b>
+
                                 <li><b>Capability of providing 700 kPa of pressure 4 mm from ultrasonic transducer.</b>
 
                             </ul>
 
                             </ul>
 
                         </div>
 
                         </div>
                        <div class="ui segment">
+
                    </div>
                            <p>The ultrasound (US) wave interacts with tissue and reflects back depending on the
+
                    <div class="ui segment">
                                properties of the tissues such as velocity of sound in the tissue and its density, which
+
                        <h4><span id="mot" class="section colorize">&nbsp;</span></h4>
                                can be modeled using <a href="https://2016.igem.org/Team:Slovenia/Model">wave
+
                        <p>The ultrasound (US) wave interacts with tissue and reflects back depending on the
                                    equation.</a> Higher frequencies have better resolution (shorter wavelengths) but
+
                            properties of the tissues such as velocity of sound in the tissues and its density, which
                                cannot penetrate as deep into the tissues. In diagnostic ultrasound frequencies above 1
+
                            can be modeled using <a href="https://2016.igem.org/Team:Slovenia/Model#mod">the wave
                                MHz are used. For better tissue penetration frequencies of interest for our purposes are
+
                                equation.</a> Higher frequencies have better resolution (shorter wavelengths) but
                                between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time
+
                            cannot penetrate as deep into the tissue. In diagnostic ultrasound frequencies above 1
                                <x-ref>Speed2001</x-ref>
+
                            MHz are used. For better tissue penetration frequencies of interest for our purposes are
                                . Latest studies show that it is possible to use pulsed ultrasound for neurostimulation,
+
                            between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time
                                ultrasound therapy such as treatment of pain and the repair of various tissues, however
+
                            <x-ref>Speed2001</x-ref>. Latest studies show that it is possible to use pulsed ultrasound for neurostimulation,
                                without clear knowledge which receptors or cell types we are targeting, and what is the
+
                            ultrasound therapy such as treatment of pain and the repair of various tissues, however
                                mechanism of the ultrasound stimulation effects
+
                            without clear knowledge which receptors or cell types we are targeting, and what is the
                                <x-ref>Vasquez2014</x-ref>
+
                            mechanism of the ultrasound stimulation effects
                                .
+
                            <x-ref>Vasquez2014</x-ref>
                            </p>
+
                            .
                        </div>
+
                        </p>
                        <h1><span class="section">&nbsp;</span>Results</h1>
+
                    </div>
                        <div class="ui segment">
+
                    <h1><span class="section colorize">&nbsp;</span>Results</h1>
                             <h3><span id="basic" class="section">&nbsp;</span>MODUSON - Generating ultrasonic power
+
                    <div class="ui segment">
 +
                        <div>
 +
                             <h3><span id="mod" class="section colorize">&nbsp;</span>MODUSON - Generating ultrasonic power
 
                                 pulses for cell stimulation</h3>
 
                                 pulses for cell stimulation</h3>
 
                             <p>For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic
 
                             <p>For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic
                                 baths (
+
                                 baths (<ref>1</ref>) for cleaning the laboratory equipment, small devices to clean jewelry or
                                <ref>1</ref>
+
                                ) that are used to clean the laboratory equipment, small devices to clean jewelry or
+
 
                                 ultrasonic cell disruptors, which however offer little control over the intensity,
 
                                 ultrasonic cell disruptors, which however offer little control over the intensity,
 
                                 frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor
 
                                 frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor
Line 106: Line 121:
 
                                     <img src=" https://static.igem.org/mediawiki/2016/3/32/T--Slovenia--5.1.15.png">
 
                                     <img src=" https://static.igem.org/mediawiki/2016/3/32/T--Slovenia--5.1.15.png">
 
                                     <figcaption><b>Different experiment configurations.</b><br/>
 
                                     <figcaption><b>Different experiment configurations.</b><br/>
                                         Testing homogeneity of pressure in each well with a plate immersed in the
+
                                         <p style="text-align:justify">Different ultrasonic baths that are used to clean jewelry or labware were initially used to stimulate
                                        ultrasonic bath.
+
cells in microtiter plates. Those devices however do not allow a significant control of the intensity, frequency, pulse duration and repetitions.
 +
Homogeneity of pressure in each well with a plate immersed in the ultrasonic bath was tested with hydrophones and care was taken to maintain the
 +
temperature.  
 +
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 123: Line 141:
 
                                 required to perform specific ultrasonic experiments in a single apparatus and as such
 
                                 required to perform specific ultrasonic experiments in a single apparatus and as such
 
                                 easy to use. The research and development of the device was performed in the Laboratory
 
                                 easy to use. The research and development of the device was performed in the Laboratory
                                 for Bioelectromagnetics/Faculty of Electrical Engineering/ University of Ljubljana under
+
                                 for Bioelectromagnetics at the Faculty of Electrical Engineering, University of
                                 the advisor prof. dr. Dejan Križaj and a company Noeto.</p>
+
                                Ljubljana under
 +
                                 the supervision of prof. dr. Dejan Križaj and a company Noeto.</p>
  
 
+
                        </div>
                             <h3><span id="basic" class="section">&nbsp;</span>The basic requirements for the device and
+
                        <div>
 +
                             <h3><span id="rel" class="section colorize">&nbsp;</span>The basic requirements for the device and
 
                                 realizations</h3>
 
                                 realizations</h3>
  
Line 139: Line 159:
 
                                 device is based on Linux system and can be completely customized to the user’s needs.
 
                                 device is based on Linux system and can be completely customized to the user’s needs.
 
                                 Furthermore, it can be Wi-Fi controlled so the final application is based on modern
 
                                 Furthermore, it can be Wi-Fi controlled so the final application is based on modern
                                 programming tools such as JavaScript, C++, Html, etc. The final application is basically
+
                                 programming tools such as JavaScript, C++, HTML, etc. The final application is essentially
                                 a web page, accessible with any computer capable of the Wi-Fi connection. This
+
                                 a web page, accessible with any computer with a Wi-Fi connection. This
                                 application gives complete control of all stimulation parameters and operation of the
+
                                 application gives complete control over all stimulation parameters and operation of the
                                 device. Another advantage of the platform used its capability of simple integration with
+
                                 device. Another advantage of the platform used is its capability of simple integration
                                 Matlab through so-called SCPI commands, usually used in the instrumentation for easy
+
                                with
                                 control and data acquisition making the device perfect research and development tool.
+
                                 Matlab through a so-called SCPI commands, usually used in the instrumentation for easy
 +
                                 control and data acquisition making the device a perfect research and development tool.
 
                                 Simple example of SCPI commands in Matlab for pulsed bursts is shown below:</p>
 
                                 Simple example of SCPI commands in Matlab for pulsed bursts is shown below:</p>
 
                             <div style="float:left; width:100%">
 
                             <div style="float:left; width:100%">
Line 163: Line 184:
 
                                     <img src="https://static.igem.org/mediawiki/2016/6/6e/T--Slovenia--5.1.6.png ">
 
                                     <img src="https://static.igem.org/mediawiki/2016/6/6e/T--Slovenia--5.1.6.png ">
 
                                     <figcaption><b>Signal parameters.</b><br/>
 
                                     <figcaption><b>Signal parameters.</b><br/>
                                        Parameters that can be set for a typical stimulation signal.
+
                                    Parameters that can be set for ultrasound stimulation signals of the MODUSON device.  
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 170: Line 191:
 
                             <h5>Simple graphical user interface</h5>
 
                             <h5>Simple graphical user interface</h5>
 
                             <p>Users of the device do not need to be computer experts and do not need to have knowledge
 
                             <p>Users of the device do not need to be computer experts and do not need to have knowledge
                                 on the signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to
+
                                 on signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to
 
                                 design and develop a simple user-friendly graphical interface with all the relevant
 
                                 design and develop a simple user-friendly graphical interface with all the relevant
 
                                 parameters that need to be set in order to run the experiments from the Web page. To
 
                                 parameters that need to be set in order to run the experiments from the Web page. To
 
                                 accomplish this, dedicated software was written that enables users to design and run the
 
                                 accomplish this, dedicated software was written that enables users to design and run the
                                 experiment and evaluate the results. Figure
+
                                 experiment and evaluate the results.
 
                                 <ref>3</ref>
 
                                 <ref>3</ref>
 
                                 presents a developed user interface. On the right side (US burst settings -> STIMULATION
 
                                 presents a developed user interface. On the right side (US burst settings -> STIMULATION
Line 186: Line 207:
 
                                 parameters can also be saved for the next use of the device.
 
                                 parameters can also be saved for the next use of the device.
 
                             </p>
 
                             </p>
                             <div>
+
                             <div style="float:left; width:50%">
                                 <figure data-ref="5">
+
                                 <figure data-ref="3">
                                     <img class="ui medium image" onclick="resize(this);"
+
                                     <img onclick="resize(this);"
 
                                         src=" https://static.igem.org/mediawiki/2016/b/bf/T--Slovenia--5.1.7.png">
 
                                         src=" https://static.igem.org/mediawiki/2016/b/bf/T--Slovenia--5.1.7.png">
                                     <figcaption><b>Application interface.</b><br/>
+
                                     <figcaption><b>Screenshot of the MODUSON control interface.</b><br/>
                                         Web based interface used for setting of the signal parameters.
+
                                         <p style="text-align:justify">Web based interface is used to set the ultrasound signal parameters on the Moduson device that is controlled by the Red Pitaya card.
 +
</p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
  
                             <h5>Signal amplifier</h5>
+
                             <h5 style="clear:both">Signal amplifier</h5>
  
                             <div style="width: 33%; float:left;">
+
                             <div style="width: 50%; float:left;">
 
                                 <figure data-ref="4">
 
                                 <figure data-ref="4">
 
                                     <img class="ui medium image" onclick="resize(this);"
 
                                     <img class="ui medium image" onclick="resize(this);"
 
                                         src=" https://static.igem.org/mediawiki/2016/7/7e/T--Slovenia--5.1.8.png">
 
                                         src=" https://static.igem.org/mediawiki/2016/7/7e/T--Slovenia--5.1.8.png">
                                     <figcaption><b>Simulation scheme.</b><br/>
+
                                     <figcaption><b>Simulation scheme of the electrical circuit to generate pulses for the ultrasound transducer.</b><br/>
                                         Scheme used in LT Spice simulations.
+
                                         <p style="text-align:justify">Electric circuit scheme used in LT Spice simulations to set the parameters to build the ultrasound stimulation device.  
 +
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
                             <div style="width: 33%; float:left;">
+
                             <div style="width: 50%; float:left;">
 
                                 <figure data-ref="5">
 
                                 <figure data-ref="5">
 
                                     <img class="ui medium image" onclick="resize(this);"
 
                                     <img class="ui medium image" onclick="resize(this);"
 
                                         src="https://static.igem.org/mediawiki/2016/3/3b/T--Slovenia--5.1.9.png ">
 
                                         src="https://static.igem.org/mediawiki/2016/3/3b/T--Slovenia--5.1.9.png ">
                                     <figcaption><b>Model of transducer.</b><br/>
+
                                     <figcaption><b>Model of the transducer functional at several resonant frequencies used for the simulation.</b><br/>
                                         Equivalent model of ultrasonic transducer based on a BVD model.
+
                                         <p style="text-align:justify">Equivalent model of ultrasonic transducer based on a BVD model that was simulated to provide 92 W of power.  
                                    </figcaption>
+
                                        </p>
                                </figure>
+
                            </div>
+
                            <div style="width: 33%; float:left;">
+
                                <figure data-ref="6">
+
                                    <img class="ui medium image" onclick="resize(this);"
+
                                        src=" https://static.igem.org/mediawiki/2016/0/0a/T--Slovenia--5.1.10.png">
+
                                    <figcaption><b>Moduson.</b><br/>
+
                                        Constructed device with a simple interface; an ON/OFF button, a BNC output for
+
                                        the transducer and a button to trigger stimulation pulses. The pulses can also
+
                                        be triggered directly through the Web interface.
+
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
 +
                           
 
                             <p style="clear:both;"></p>
 
                             <p style="clear:both;"></p>
 
                             <p>We built the circuitry with real elements on a prototype board where several additional
 
                             <p>We built the circuitry with real elements on a prototype board where several additional
 
                                 alterations were required, as the real elements do not have ideal characteristics as the
 
                                 alterations were required, as the real elements do not have ideal characteristics as the
                                 ones included in the simulation. Another challenge was the design of a suitable
+
                                 ones included in the simulation (<ref>7</ref>). Another challenge was the design of a suitable
 
                                 transformer to increase the voltage amplitude of the signal. The transformer is also
 
                                 transformer to increase the voltage amplitude of the signal. The transformer is also
 
                                 required to operate as an impedance transformer. Lowering impedance of the ultrasonic
 
                                 required to operate as an impedance transformer. Lowering impedance of the ultrasonic
 
                                 transducer enables higher current levels and consequently higher power values.</p>
 
                                 transducer enables higher current levels and consequently higher power values.</p>
                             <p>Once a suitable signal is generated, it needs to be amplified from a signal level
+
                          <div style="width:70%; margin-left:auto; margin-right:auto;">
 +
                                <figure data-ref="6">
 +
                                    <img
 +
                                        src=" https://static.igem.org/mediawiki/2016/0/0a/T--Slovenia--5.1.10.png">
 +
                                    <figcaption><b>Final look of the Moduson device from the inside and outside.</b><br/>
 +
                                        <p style="text-align:justify">Constructed device was equipped with a simple interface; an ON/OFF button, a BNC output for the
 +
transducer and a button to trigger stimulation pulses. All parameters are set by the Web interface that also provides the ability
 +
to trigger the stimulation pulses. When we have more time we will develop a new version with more neatly arranged wiring.
 +
                                        </p>
 +
                                    </figcaption>
 +
                                </figure>
 +
                             </div>
 +
 
 +
  <p>Once a suitable signal is generated, it needs to be amplified from a signal level
 
                                 (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious
 
                                 (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious
 
                                 engineering challenge. For this purpose, we first designed a circuitry on a conceptual
 
                                 engineering challenge. For this purpose, we first designed a circuitry on a conceptual
                                 level and simulated it with LT Spice (
+
                                 level and simulated it with LT Spice (<ref>4</ref>). In the simulations an electric model of a transducer was considered as a combination
                                <ref>4</ref>
+
                                 of capacitors, inductors and resistors wired in parallel (<ref>5</ref>). This model enables simulation of ultrasonic transducers with several resonant
                                ). In the simulations an electric model of a transducer was considered as a combination
+
                                 of capacitors, inductors and resistors wired in parallel (
+
                                <ref>5</ref>
+
                                ). This model enables simulation of ultrasonic transducers with several resonant
+
 
                                 frequencies. Simulations show that our device can reach the power at transducer around
 
                                 frequencies. Simulations show that our device can reach the power at transducer around
 
                                 92W, which is close to the measured 86W in the real system.
 
                                 92W, which is close to the measured 86W in the real system.
 
                             </p>
 
                             </p>
                             <h3><span id="evaluation" class="section">nbsp;</span>Evaluation of the developed device
+
                        </div>
 +
                        <div>
 +
                             <h3><span id="eva" class="section colorize">nbsp;</span>Evaluation of the developed device
 
                             </h3>
 
                             </h3>
  
                             <p>Functionality of the Moduson was first tested without any connected load. Figure
+
                             <p>Functionality of the Moduson was first tested without any connected load.
 
                                 <ref>7</ref>
 
                                 <ref>7</ref>
 
                                 presents a typical output measured with an oscilloscope for a signal of frequency 310
 
                                 presents a typical output measured with an oscilloscope for a signal of frequency 310
Line 258: Line 283:
 
                                 <figure data-ref="7">
 
                                 <figure data-ref="7">
 
                                     <img src="https://static.igem.org/mediawiki/2016/5/58/T--Slovenia--5.1.2.png ">
 
                                     <img src="https://static.igem.org/mediawiki/2016/5/58/T--Slovenia--5.1.2.png ">
                                     <figcaption><b>Typical output signal without load.</b><br/>
+
                                     <figcaption><b>MODUSON output signal without load</b><br/>
                                         Amplitude of acquired signal depends on the winding of transformer.
+
                                         <p style="text-align:justify">Typical output signal is shown, detected by te oscilloscope, where the amplitude of the acquired signal depends  
 +
on the winding of the transformer.
 +
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 266: Line 293:
 
                             <p>Developed device was tested with several transducers with resonance frequencies ranging
 
                             <p>Developed device was tested with several transducers with resonance frequencies ranging
 
                                 from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer
 
                                 from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer
                                 Olympus V318-SU (
+
                                 Olympus V318-SU (<ref>8</ref>) with a waterproof case, allowing it to be used in <i>in vitro</i> experiments.
                                <ref>8</ref>
+
                                ) with a waterproof case, allowing it to be used in in vitro experiments.
+
 
                             </p>
 
                             </p>
  
Line 275: Line 300:
 
                                     <img src="https://static.igem.org/mediawiki/2016/f/fe/T--Slovenia--5.1.11.png ">
 
                                     <img src="https://static.igem.org/mediawiki/2016/f/fe/T--Slovenia--5.1.11.png ">
 
                                     <figcaption><b>Ultrasound transducer V318-SU.</b><br/>
 
                                     <figcaption><b>Ultrasound transducer V318-SU.</b><br/>
                                         Handy waterproof case allowed us to use the transducer in most experiments.
+
                                         <p style="text-align:justify">Handy waterproof case of the transducer connected to MODUSON allowed us to use this transducer in most experiments.  
 +
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 284: Line 310:
 
                                     <figcaption><b>Electric power of ultrasonic transducer before and after
 
                                     <figcaption><b>Electric power of ultrasonic transducer before and after
 
                                         compensation.</b><br/>
 
                                         compensation.</b><br/>
                                         Electrical power with compensation was significantly increased with serial
+
                                         <p style="text-align:justify">Few additional electronic tweaks improved the performance of the device. Electrical power with compensation was significantly  
                                        compensation.
+
increased with serial compensation.</p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 299: Line 325:
  
 
                             <p>With compensation, voltage was considerably increased at contacts of transducer and
 
                             <p>With compensation, voltage was considerably increased at contacts of transducer and
                                 reached around 900Vpp as shown in Figure
+
                                 reached around 900 Vpp as shown in
 
                                 <ref>10</ref>
 
                                 <ref>10</ref>
 
                                 .
 
                                 .
Line 307: Line 333:
 
                                     <img src="https://static.igem.org/mediawiki/2016/3/3d/T--Slovenia--5.1.1.png ">
 
                                     <img src="https://static.igem.org/mediawiki/2016/3/3d/T--Slovenia--5.1.1.png ">
 
                                     <figcaption><b>Voltage at input of a transducer V318-SU.</b><br/>
 
                                     <figcaption><b>Voltage at input of a transducer V318-SU.</b><br/>
                                         Transducer requires relative high voltage to operate properly.
+
                                         <p style="text-align:justify">Transducer requires relative high voltage to operate properly and produce the required pulse sequences.  
 +
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 313: Line 340:
  
 
                             <p>We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in
 
                             <p>We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in
                                Figure
 
 
                                 <ref>11</ref>
 
                                 <ref>11</ref>
                                 . This hydrophone has a sensitivity of 50mV/100kPa at a frequency of 310kHz. It can be
+
                                 . This hydrophone has a sensitivity of 50 mV/100 kPa at a frequency of 310 kHz. It can be
 
                                 connected directly to the oscilloscope input to detect the pressure of the ultrasonic
 
                                 connected directly to the oscilloscope input to detect the pressure of the ultrasonic
                                 waves. Pressure measured 4 mm from the transducer reached 7 kPa which gives the
+
                                 waves. Pressure measured 4 mm from the transducer reached 700 kPa which gives the
 
                                 intensity of 33 W/cm<sup>2<sup>.</p>
 
                                 intensity of 33 W/cm<sup>2<sup>.</p>
  
Line 324: Line 350:
 
                                     <img src="https://static.igem.org/mediawiki/2016/e/e5/T--Slovenia--5.1.12.png ">
 
                                     <img src="https://static.igem.org/mediawiki/2016/e/e5/T--Slovenia--5.1.12.png ">
 
                                     <figcaption><b>Hydrophone RP 31l.</b><br/>
 
                                     <figcaption><b>Hydrophone RP 31l.</b><br/>
                                         Calibrated hydrophone used to measure pressure.
+
                                         <p style="text-align:justify">Calibrated hydrophone was used to measure pressure in different experiments in order to determine the power
 +
attenuation due to the absorbance of the plate, different geometry and ultrasound signal generation.  
 +
                                        </p>
 
                                     </figcaption>
 
                                     </figcaption>
 
                                 </figure>
 
                                 </figure>
Line 330: Line 358:
  
 
                             <p style="clear:both">Example of an output signal measured by a hydrophone is presented in
 
                             <p style="clear:both">Example of an output signal measured by a hydrophone is presented in
                                 the Figure
+
                                 the
 
                                 <ref>12</ref>
 
                                 <ref>12</ref>
 
                                 .
 
                                 .
 
                             <p>
 
                             <p>
  
                            <div style="float:left; width:100%">
+
                                <div style="float:left; width:100%">
                                <figure data-ref="12">
+
                                    <figure data-ref="12">
                                    <img src=" https://static.igem.org/mediawiki/2016/b/b8/T--Slovenia--5.1.3.png">
+
                                        <img src=" https://static.igem.org/mediawiki/2016/b/b8/T--Slovenia--5.1.3.png">
                                    <figcaption><b>Voltage signal detected using the hydrophone.</b><br/>
+
                                        <figcaption><b>Voltage signal detected using the hydrophone.</b><br/>
                                        With calibration data, we can determine pressure which corresponds to acquired
+
                            <p style="text-align:justify">Based on calibration data of the hydrophone, we can determine pressure for each experimental setup, which corresponds to the acquired  
                                        voltage amplitude.
+
voltage amplitude.  
                                    </figcaption>
+
                                </figure>
+
                            </div>
+
                            <p style="clear:both;">
+
 
                             </p>
 
                             </p>
 +
                            </figcaption>
 +
                            </figure>
 +
                        </div>
 +
                        <p style="clear:both;">
 +
                        </p>
 +
                    </div>
 +
                    <div>
 +
                        <h3><span id="set" class="section colorize">nbsp;</span>Set-up for experiments with ultrasonic
 +
                            pulses</h3>
  
                            <h3><span id="setup" class="section">nbsp;</span>Set-up for experiments with ultrasonic
+
                        <p>After we successfully tested the Moduson device, we aimed to design measurement set-up
                                pulses</h3>
+
                            for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of
 
+
                            the ultrasound transducer. In order to ensure repeatable conditions in every experiment
                            <p>After we successfully tested the Moduson device, we aimed to design measurement set-up
+
                            the position of a transducer was fixed with a suitable holder. Several models of holders
                                for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of
+
                            were designed for different experimental configurations and a 3D-printer was used to
                                the ultrasound transducer. In order to ensure repeatable conditions in every experiment
+
                            fabricate a dedicated holder (<ref>13</ref>). This allowed positioning of the transducer at the fixed height above the bottom of a
                                the position of a transducer was fixed with a suitable holder. Several models of holders
+
                            well (<ref>14</ref>), which was crucial due to the series of maximal and minimal intensity of generated
                                were designed for different experimental configurations and a 3D-printer was used to
+
                            pressure.
                                fabricate a dedicated holder (
+
                        <p>
                                <ref>13</ref>
+
                                ). This allowed positioning of the transducer at the fixed height above the bottom of a
+
                                well, which was crucial due to the series of maximal and minimal intensity of generated
+
                                pressure.
+
                            <p>
+
 
                             <div style="float:left; width:50%">
 
                             <div style="float:left; width:50%">
 
                                 <figure data-ref="13">
 
                                 <figure data-ref="13">
 
                                     <img src="https://static.igem.org/mediawiki/2016/8/88/T--Slovenia--5.1.13.png ">
 
                                     <img src="https://static.igem.org/mediawiki/2016/8/88/T--Slovenia--5.1.13.png ">
                                     <figcaption><b>3D printer.</b><br/>
+
                                     <figcaption><b>3D printing of the assembly of the cell microplate holder for the ultrasound device.</b><br/>
                                        Printing a holder for the ultrasonic transducer that we used for a 6-well plate.
+
                        <p style="text-align:justify">A holder for the accurate positioning of the ultrasonic transducer for a 6-well microtiter plate was constructed by a 3D printer.  
                                    </figcaption>
+
                        </p>
                                </figure>
+
                        </figcaption>
                            </div>
+
                        </figure>
 +
                    </div>
  
                            <div style="float:left; width:50%">
+
                    <div style="float:left; width:50%">
                                <figure data-ref="14">
+
                        <figure data-ref="14">
                                    <img src=" https://static.igem.org/mediawiki/2016/e/ea/T--Slovenia--5.1.14.png">
+
                            <img src=" https://static.igem.org/mediawiki/2016/e/ea/T--Slovenia--5.1.14.png">
                                    <figcaption><b>Ultrasound based experiments on the microscope.</b><br/>
+
                            <figcaption><b>Setup of the ultrasound based experiments on the fluorescence microscope.</b><br/>
                                        Ultrasonic transducer with a 3D printed holder in a 6-well plate.
+
                                <p style="text-align:justify">Ultrasonic transducer was immersed into the medium above cells using a 3D printed holder in a 6-well plate. Calcium
                                    </figcaption>
+
influx was measured in the real time using the ratio of two Ca-dependent fluorescent dyes and analyzed using software CaPTURE developed for the project.
                                </figure>
+
                                </p>
                            </div>
+
                            </figcaption>
 +
                        </figure>
 +
                    </div>
  
                            <p style="clear:both;">
+
                    <p style="clear:both;">
                            </p>
+
                    </p>
                        </div>
+
 
+
                    </div>
+
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 +
 +
            <h3 class="ui left dividing header"><span id="ref-title" class="section colorize">&nbsp;</span>References
 +
            </h3>
 +
            <div class="ui segment citing" id="references"></div>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 +
</div>
 +
<div>
 +
    <a href="//igem.org/Main_Page">
 +
        <img border="0" alt="iGEM" src="//2016.igem.org/wiki/images/8/84/T--Slovenia--logo_250x250.png" width="5%"
 +
            style="position: fixed; bottom:0%; right:1%;">
 +
    </a>
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 20:47, 8 November 2016

Hardware

  Ultrasound controlling device

  • Implementation of 90 W ultrasonic amplifier for pulsed cells stimulation.
  • Optimization of the developed system in a given frequency range around 310 kHz.
  • User friendly control interface of the device.
  • Capability of providing 700 kPa of pressure 4 mm from ultrasonic transducer.

 

The ultrasound (US) wave interacts with tissue and reflects back depending on the properties of the tissues such as velocity of sound in the tissues and its density, which can be modeled using the wave equation. Higher frequencies have better resolution (shorter wavelengths) but cannot penetrate as deep into the tissue. In diagnostic ultrasound frequencies above 1 MHz are used. For better tissue penetration frequencies of interest for our purposes are between 0.3 to 1 MHz yielding sufficient resolution and penetration at the same time Speed2001. Latest studies show that it is possible to use pulsed ultrasound for neurostimulation, ultrasound therapy such as treatment of pain and the repair of various tissues, however without clear knowledge which receptors or cell types we are targeting, and what is the mechanism of the ultrasound stimulation effects Vasquez2014 .

 Results

 MODUSON - Generating ultrasonic power pulses for cell stimulation

For the simple setup of the ultrasonic stimulation of cells we initially used ultrasonic baths (1) for cleaning the laboratory equipment, small devices to clean jewelry or ultrasonic cell disruptors, which however offer little control over the intensity, frequency or pulse shapes and numbers of repetitions and are not appropriate to monitor activation of mechanosensors under the fluorescence microscope. However, one member of the team is a student of electrical engineering and this was the right challenge for him.

Different experiment configurations.

Different ultrasonic baths that are used to clean jewelry or labware were initially used to stimulate cells in microtiter plates. Those devices however do not allow a significant control of the intensity, frequency, pulse duration and repetitions. Homogeneity of pressure in each well with a plate immersed in the ultrasonic bath was tested with hydrophones and care was taken to maintain the temperature.

For the generation of specific shapes of ultrasound pulses researchers usually use a setup consisting of two signal generators (one for switching on and off the train of US pulses and the other one to produce the sinusoidal signal of suitable frequency). This signal is further fed to the amplifier and then to the ultrasonic transducer. Furthermore, an ultrasonic sensor is required to evaluate and control the magnitude of the ultrasound. Usually a hydrophone is used in combination with an amplifier and an oscilloscope. This setup is complex to establish and difficult to use. Therefore, the goal of a part of the iGEM 2016 group (student of electrical engineering) was to develop a device (named Moduson), which would be capable of providing appropriate signals required to perform specific ultrasonic experiments in a single apparatus and as such easy to use. The research and development of the device was performed in the Laboratory for Bioelectromagnetics at the Faculty of Electrical Engineering, University of Ljubljana under the supervision of prof. dr. Dejan Križaj and a company Noeto.

 The basic requirements for the device and realizations

Adaptability

The device should be designed to be as flexible as possible in order to be capable of delivering a wide range and different shapes of stimulation signals to stimulate cells under the microscope, cells in a petri dish, cells in a microplate immersed into a bath and to stimulate animals. In order to fulfill this requirement we selected a dedicated embedded measurement card Red Pitaya acting as an embedded computer. This embedded device is based on Linux system and can be completely customized to the user’s needs. Furthermore, it can be Wi-Fi controlled so the final application is based on modern programming tools such as JavaScript, C++, HTML, etc. The final application is essentially a web page, accessible with any computer with a Wi-Fi connection. This application gives complete control over all stimulation parameters and operation of the device. Another advantage of the platform used is its capability of simple integration with Matlab through a so-called SCPI commands, usually used in the instrumentation for easy control and data acquisition making the device a perfect research and development tool. Simple example of SCPI commands in Matlab for pulsed bursts is shown below:

On the 2 a typical sequence of a stimulation signal constructed of a set number of sine waves of defined frequency that is repeated for required number of times with selected repetition period is shown.

Signal parameters.
Parameters that can be set for ultrasound stimulation signals of the MODUSON device.
Simple graphical user interface

Users of the device do not need to be computer experts and do not need to have knowledge on signal generators, amplifiers and oscilloscopes. Therefore, the motivation was to design and develop a simple user-friendly graphical interface with all the relevant parameters that need to be set in order to run the experiments from the Web page. To accomplish this, dedicated software was written that enables users to design and run the experiment and evaluate the results. 3 presents a developed user interface. On the right side (US burst settings -> STIMULATION PULSE) we can set parameters, such as the amplitude of the signal, frequency and number of sine waves. Below these settings, repetition parameters of the signal (PULSE REPETITION) such as the number of pulse repetitions and its frequency can be set. When all parameters are set, the signal can be previewed by clicking the SHOW BURST button. The pulse sequence is initiated with the START button. The acquired signal from hydrophone is seen on the main plot. At the top of the interface, there are options to export the image of a graph and csv data of the acquired signal. Chosen values of parameters can also be saved for the next use of the device.

Screenshot of the MODUSON control interface.

Web based interface is used to set the ultrasound signal parameters on the Moduson device that is controlled by the Red Pitaya card.

Signal amplifier
Simulation scheme of the electrical circuit to generate pulses for the ultrasound transducer.

Electric circuit scheme used in LT Spice simulations to set the parameters to build the ultrasound stimulation device.

Model of the transducer functional at several resonant frequencies used for the simulation.

Equivalent model of ultrasonic transducer based on a BVD model that was simulated to provide 92 W of power.

We built the circuitry with real elements on a prototype board where several additional alterations were required, as the real elements do not have ideal characteristics as the ones included in the simulation (7). Another challenge was the design of a suitable transformer to increase the voltage amplitude of the signal. The transformer is also required to operate as an impedance transformer. Lowering impedance of the ultrasonic transducer enables higher current levels and consequently higher power values.

Final look of the Moduson device from the inside and outside.

Constructed device was equipped with a simple interface; an ON/OFF button, a BNC output for the transducer and a button to trigger stimulation pulses. All parameters are set by the Web interface that also provides the ability to trigger the stimulation pulses. When we have more time we will develop a new version with more neatly arranged wiring.

Once a suitable signal is generated, it needs to be amplified from a signal level (amplitude of 2 V) to several hundred volts or even above 1000 V, which poses a serious engineering challenge. For this purpose, we first designed a circuitry on a conceptual level and simulated it with LT Spice (4). In the simulations an electric model of a transducer was considered as a combination of capacitors, inductors and resistors wired in parallel (5). This model enables simulation of ultrasonic transducers with several resonant frequencies. Simulations show that our device can reach the power at transducer around 92W, which is close to the measured 86W in the real system.

nbsp;Evaluation of the developed device

Functionality of the Moduson was first tested without any connected load. 7 presents a typical output measured with an oscilloscope for a signal of frequency 310 kHz.

MODUSON output signal without load

Typical output signal is shown, detected by te oscilloscope, where the amplitude of the acquired signal depends on the winding of the transformer.

Developed device was tested with several transducers with resonance frequencies ranging from 300 kHz up to 1 MHz. Most experiments were performed with an unfocused transducer Olympus V318-SU (8) with a waterproof case, allowing it to be used in in vitro experiments.

Ultrasound transducer V318-SU.

Handy waterproof case of the transducer connected to MODUSON allowed us to use this transducer in most experiments.

Electric power of ultrasonic transducer before and after compensation.

Few additional electronic tweaks improved the performance of the device. Electrical power with compensation was significantly increased with serial compensation.

9 presents measured electric power using the transducer V318-SU. After partial compensation of reactive part, the measured real power reached 86 W. This result exceeded the set requirements.

With compensation, voltage was considerably increased at contacts of transducer and reached around 900 Vpp as shown in 10 .

Voltage at input of a transducer V318-SU.

Transducer requires relative high voltage to operate properly and produce the required pulse sequences.

We measured the emitted ultrasonic pressure indirectly with a hydrophone RP 31l shown in 11 . This hydrophone has a sensitivity of 50 mV/100 kPa at a frequency of 310 kHz. It can be connected directly to the oscilloscope input to detect the pressure of the ultrasonic waves. Pressure measured 4 mm from the transducer reached 700 kPa which gives the intensity of 33 W/cm2.

Hydrophone RP 31l.

Calibrated hydrophone was used to measure pressure in different experiments in order to determine the power attenuation due to the absorbance of the plate, different geometry and ultrasound signal generation.

Example of an output signal measured by a hydrophone is presented in the 12 .

Voltage signal detected using the hydrophone.

Based on calibration data of the hydrophone, we can determine pressure for each experimental setup, which corresponds to the acquired voltage amplitude.

nbsp;Set-up for experiments with ultrasonic pulses

After we successfully tested the Moduson device, we aimed to design measurement set-up for stimulation of cells cultivated in plastic 6-well plates, which allows insertion of the ultrasound transducer. In order to ensure repeatable conditions in every experiment the position of a transducer was fixed with a suitable holder. Several models of holders were designed for different experimental configurations and a 3D-printer was used to fabricate a dedicated holder (13). This allowed positioning of the transducer at the fixed height above the bottom of a well (14), which was crucial due to the series of maximal and minimal intensity of generated pressure.

3D printing of the assembly of the cell microplate holder for the ultrasound device.

A holder for the accurate positioning of the ultrasonic transducer for a 6-well microtiter plate was constructed by a 3D printer.

Setup of the ultrasound based experiments on the fluorescence microscope.

Ultrasonic transducer was immersed into the medium above cells using a 3D printed holder in a 6-well plate. Calcium influx was measured in the real time using the ratio of two Ca-dependent fluorescent dyes and analyzed using software CaPTURE developed for the project.

 References