Difference between revisions of "Team:DTU-Denmark"

 
(17 intermediate revisions by 4 users not shown)
Line 36: Line 36:
 
     .space {
 
     .space {
 
         margin-bottom: 2em;
 
         margin-bottom: 2em;
 +
    }
 +
    .ul {
 +
       
 +
    }
 +
    h3.achi {
 +
        text-align: center;
 
     }
 
     }
 
</style>
 
</style>
Line 46: Line 52:
 
<body class="container-fluid">
 
<body class="container-fluid">
 
<div class="container front-page">
 
<div class="container front-page">
 +
 +
<h1 class="main-title">ACHIEVEMENTS</h1>
 +
<div class="row">
 +
    <div class="col-lg-12 col-md-12 col-sm-12 col-xs-12">
 +
        <h3 class="achi">We won a gold medal</h3>
 +
        <h3 class="achi">We got nominated for Best Hardware, Overgrad</h3>
 +
        <h3 class="achi">We got nominated for Best Poster, Overgrad</h3>
 +
    </div>
 +
</div>
  
 
<h1 class="main-title">YEASTILIZATION</h1>
 
<h1 class="main-title">YEASTILIZATION</h1>
Line 58: Line 73:
 
                   <h2>The <strong>problem</strong></h2>
 
                   <h2>The <strong>problem</strong></h2>
 
                         <p><strong>
 
                         <p><strong>
                             The current state of industrial biotechnology means that the vast majority biorefineries rely on edible substrates such as corn, wheat or sugar canes. This has sparked the food vs. fuel debate, leading to the fundamental question: “Should we use our edible crops to feed the growing human population, or use it to provide sustainable chemicals for the industrialised world?”. A better question might be: “Why are we not doing both?”. The limiting factor of the current processes, is a lack of molecular tools that has limited us to the use of a small number of organisms with narrow substrate ranges. Even though efforts have been made to expand the substrate range of many conventional cell factories, such as Escherichia coli and Saccharomyces cerevisiae, the task has proven difficult and we have yet to see real impact from these efforts.
+
                             In the current state of industrial biotechnology, the vast majority of biorefineries rely on edible substrates such as corn, wheat or sugar cane. This has sparked the food vs. fuel debate, leading to the fundamental question whether we should use our edible crops to feed the growing human population, or to provide sustainable chemicals. The limiting factor for current processes is the lack of molecular tools,
 +
                            which restricts biotechnology to conventional organisms that are optimised for a limited number of substrates.
 
                         </strong></p>
 
                         </strong></p>
 
                 </div>
 
                 </div>
Line 73: Line 89:
 
                
 
                
 
                 <p><strong>
 
                 <p><strong>
                     The development of new technologies such as CRISPR and Next-generation sequencing has dramatically reduced the effort required to genetically modify non-model organisms, and is effectively breaking down the barrier between model and non-model organism. Therefore we thought: “Why force a model organisms to grow on non-conventional substrates, when we can start of with an organism that already grows on a broad range of substrates?”. In this project we employ <i>Yarrowia lipolytica</i>, in order to solve the food vs. fuel dilemma while simultainiously making industrial biotechnology an integrated part of waste handling.  
+
                     The development of new technologies such as CRISPR/Cas9 and Next-generation sequencing has dramatically reduced the effort required to genetically modify non-model organisms, and is effectively breaking down the barrier between model and non-model organisms. In our project we utilise <i>Yarrowia lipolytica</i>, in order to solve the food vs. fuel dilemma while simultaneously making industrial biotechnology an integrated part of waste handling. <p><i>Scroll down to explore our project</i></p>
 
                 </strong></p>
 
                 </strong></p>
 
                 </div>
 
                 </div>
Line 84: Line 100:
 
<h1 class="main-title">EXPLORE</h1>
 
<h1 class="main-title">EXPLORE</h1>
 
<div class="row front-tiles"> <!--row2-->
 
<div class="row front-tiles"> <!--row2-->
     <div class="col-lg-1 col-md-1 xs-hidden sm-hidden"></div>
+
     <div class="col-lg-1 col-md-1 col-sm-1 xs-hidden"></div>
 
     <div class="col-lg-2 col-md-2 col-sm-2 col-xs-12"> <!--Project tile-->
 
     <div class="col-lg-2 col-md-2 col-sm-2 col-xs-12"> <!--Project tile-->
 
       <div class="space">
 
       <div class="space">
Line 139: Line 155:
 
             </a>
 
             </a>
 
       </div>
 
       </div>
     </div> <!--/Outreach tile-->
+
     </div>
 +
    <div class="col-lg-1 col-md-1 col-sm-1 xs-hidden"></div>
 +
    <!--/Outreach tile-->
 
</div> <!--/row2-->
 
</div> <!--/row2-->
 
</div> <!--/container front-page-->
 
</div> <!--/container front-page-->

Latest revision as of 00:29, 3 December 2016

New HTML template for the wiki





ACHIEVEMENTS

We won a gold medal

We got nominated for Best Hardware, Overgrad

We got nominated for Best Poster, Overgrad

YEASTILIZATION

The problem

In the current state of industrial biotechnology, the vast majority of biorefineries rely on edible substrates such as corn, wheat or sugar cane. This has sparked the food vs. fuel debate, leading to the fundamental question whether we should use our edible crops to feed the growing human population, or to provide sustainable chemicals. The limiting factor for current processes is the lack of molecular tools, which restricts biotechnology to conventional organisms that are optimised for a limited number of substrates.

The solution

The development of new technologies such as CRISPR/Cas9 and Next-generation sequencing has dramatically reduced the effort required to genetically modify non-model organisms, and is effectively breaking down the barrier between model and non-model organisms. In our project we utilise Yarrowia lipolytica, in order to solve the food vs. fuel dilemma while simultaneously making industrial biotechnology an integrated part of waste handling.

Scroll down to explore our project

EXPLORE




  • FIND US AT:
Facebook Twitter
  • DTU BIOBUILDERS
  • DENMARK
  • DTU - SØLTOFTS PLADS, BYGN. 221/002
  • 2800 KGS. LYNGBY

  • E-mail:
  • dtu-biobuilders-2016@googlegroups.com
  • MAIN SPONSORS:
Lundbeck fundation DTU blue dot Lundbeck fundation Lundbeck fundation