Difference between revisions of "Team:Aalto-Helsinki/Laboratory"

(Created page with "<html lang="en"> <head> <meta content="text/html; charset=utf-8" http-equiv="Content-Type"/> <meta charset="utf-8"/> <meta content="IE=edge" http-equiv="X-UA-Compatible...")
 
 
(16 intermediate revisions by 4 users not shown)
Line 29: Line 29:
 
   <div style="height:100%">
 
   <div style="height:100%">
 
   <section class="sciencephoto parallax" style="text-align: center">
 
   <section class="sciencephoto parallax" style="text-align: center">
     <h2 class="title">
+
     <h2 class="title" style="padding-top: 0;">
 
     Laboratory
 
     Laboratory
 
     </h2>
 
     </h2>
Line 88: Line 88:
 
     <li style="float:left; font-family: bebas_neuebold;">
 
     <li style="float:left; font-family: bebas_neuebold;">
 
       <b>
 
       <b>
       <a href="index.html" style="margin-left: 10px; font-size:22px; position:absolute;">
+
       <a href="index" style="margin-left: 10px; font-size:22px; position:absolute;">
 
         AALTO-HELSINKI 2016
 
         AALTO-HELSINKI 2016
 
       </a>
 
       </a>
Line 107: Line 107:
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <br/>
 
     <br/>
    <h1 id="ONE">
 
      Overview
 
    </h1>
 
 
     <br/>
 
     <br/>
    <p class="justify" style="font-size:19px;">
 
      Our team has worked hard in the lab to provide a good proof of concept for our detection and degradation ideas. On this page, you can find a detailed explanation of the assays we have used in our work and a link to all the protocols we have used. In addition, all of our results are presented here in detail. To see only the main results and discussion, please see the achievements section of our page. For even more details you can check out our lab book, where everything is written precisely. Information about safety in the lab is also provided in this page.
 
    </p>
 
    </div>
 
    <br/>
 
    <br/>
 
    <div class="sectionjee" style="background-color: #8a4b29">
 
    <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
 
      “
 
      <i style="font-family: robotolight; font-size: 19px;">
 
      Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
 
      </i>
 
      ”
 
    </h2>
 
 
     <br/>
 
     <br/>
 
     <br/>
 
     <br/>
    </div>
 
    <br/>
 
    <br/>
 
    <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
 
     <br/>
 
     <br/>
     <h1 id="TWO">
+
     <h1 id="ONE">
 
       Assays
 
       Assays
 
     </h1>
 
     </h1>
    <br/>
 
 
     <h2>
 
     <h2>
 
       Fluorescence assays
 
       Fluorescence assays
Line 149: Line 127:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       For measuring fluorescence, we decided to use a microplate reader (Cytation3, BioTek) in order to be able to easily monitor the development of the fluorescence. In our microplate reader experiments, liquid cultures of yeast cells containing the stress promoter plasmids were induced with different concentrations of hydrogen peroxide on a 96-well plate. The plate is sealed with an optically clear cover, and incubated in the microplate reader at +30 °C with vertical shaking. Yeast has a tendency to clump when grown in microtiter plates, but vigorous vertical shaking is suitable for limiting this. OD600 and fluorescence values can then be measured throughout the growth of the cultures at defined intervals to observe the development of fluorescence and obtain an expression profile for the newly  constructed stress promoters.
+
       For measuring fluorescence, we decided to use a microplate reader (Cytation3, BioTek) in order to be able to easily monitor the development of the fluorescence. In our microplate reader experiments, liquid cultures of yeast cells containing the stress promoter plasmids were induced with different concentrations of hydrogen peroxide on a 96-well plate. The plate was sealed with an optically clear cover, and incubated in the microplate reader at +30 °C with vertical shaking. Yeast has a tendency to clump when grown in microtiter plates, but vigorous vertical shaking is suitable for limiting this. OD600 and fluorescence values can then be measured throughout the growth of the cultures at defined intervals to observe the development of fluorescence and obtain an expression profile for the newly  constructed stress promoters.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 157: Line 135:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       From the plate reader results, multiple different curves could be drawn. Plots of OD600 and fluorescence as functions of time are straightforward to draw, but as hydrogen peroxide slows the cell growth significantly, comparisons of fluorescence values at any given time point would not be informative in telling about the amount of fluorescence produced by the cells. A more representative graph would thus be one where fluorescence is presented as the function of cell density (OD600); this way, fluorescence signals given by cell populations of equal density can be compared.  All the sample values can then be compared to an uninduced control and to a positive control (Venus under GDP1 promoter). As our sensor is based on detecting differences between fluorescence in induced and uninduced conditions, we can use Venus under GPD promoter dually also as a negative control; with this negative control, we see whether H
+
       From the plate reader results, multiple different curves could be drawn. Plots of OD600 and fluorescence as functions of time are straightforward to draw, but as hydrogen peroxide slows the cell growth significantly, comparisons of fluorescence values at any given time point would not be informative in telling about the amount of fluorescence produced by the cells. A more representative graph would thus be one where fluorescence is presented as the function of cell density (OD600); this way, fluorescence signals given by cell populations of equal density can be compared.  All the sample values can then be compared to an uninduced control and to a positive control (Venus under GDP1 promoter). As our sensor is based on detecting differences in fluorescence between induced and uninduced conditions, we can use Venus under GPD promoter dually also as a negative control; with this negative control, we see whether H
 
       <sub>
 
       <sub>
 
       2
 
       2
Line 169: Line 147:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       As a second method for measuring fluorescence, we used a flow cytometer (FACSaria III, BDBiosciences). In flow cytometry, the fluorescence can be measured from individual cells in a cell suspension. The fluorescent signal of thousands of cells can be rapidly measured to produce information on the mean or median fluorescence values and distribution of fluorescence. This means that the development of the fluorescence as a function of time can’t be assessed as easily, as samples of each measured time point have to be prepared separately. However,  more precise values are obtained, with less bias from background. To analyze fluorescence, induction is performed by adding hydrogen peroxide to a cell culture to the desired concentration, and incubating the cell cultures at +30 °C with shaking (220-250rpm). A sample of cells can then be collected from the cell culture, and diluted to a an appropriate cell density in PBS for analysis with the flow cytometer.
+
       As a second method for measuring fluorescence, we used a flow cytometer (FACSaria III, BDBiosciences). In flow cytometry, the fluorescence can be measured from individual cells in a cell suspension. The fluorescent signal of thousands of cells can be rapidly measured to produce information on the mean or median fluorescence values and distribution of fluorescence. This means that the development of the fluorescence as a function of time can’t be assessed as easily, as samples of each measured time point have to be prepared separately. However,  more precise values are obtained, with less bias from background. To analyze fluorescence, induction is performed by adding hydrogen peroxide to a cell culture to the desired concentration, and incubating the cell cultures at +30 °C with shaking. A sample of cells can then be collected from the cell culture, and diluted to a an appropriate cell density in PBS for analysis with the flow cytometer.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 204: Line 182:
 
       Our plan was to use a simple visual catalase assay for this functionality verification (Iwase et al., 2013). In preparation for this assay, yeast cells are incubated with microcystin. After the incubation, to perform the catalase assay on the cells, hydrogen peroxide and the detergent Triton X-100 are added. As catalase breaks down hydrogen peroxide to water and oxygen, bubbles are formed in the samples; Triton X functions as a surfactant, enhancing the formation and stability of a foam layer. The quantity of formed foam is relative to catalase activity in the cells, so by comparing the thicknesses of the foam layers, catalase activities can be compared.
 
       Our plan was to use a simple visual catalase assay for this functionality verification (Iwase et al., 2013). In preparation for this assay, yeast cells are incubated with microcystin. After the incubation, to perform the catalase assay on the cells, hydrogen peroxide and the detergent Triton X-100 are added. As catalase breaks down hydrogen peroxide to water and oxygen, bubbles are formed in the samples; Triton X functions as a surfactant, enhancing the formation and stability of a foam layer. The quantity of formed foam is relative to catalase activity in the cells, so by comparing the thicknesses of the foam layers, catalase activities can be compared.
 
     </p>
 
     </p>
     <ul class="justify" style="font-size:19px;">
+
     <p class="justify" style="font-size:19px;">
 
       We have three hypotheses for the results of our assay.
 
       We have three hypotheses for the results of our assay.
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
 +
    </p>
 +
    <ul class="justify" style="font-size:19px;">
 
       <li>
 
       <li>
 
       VL3 and SS328-leu with the QDR2 from VL3, having the MC-transporter for microcystin would have highest catalase activities in the presence of microcystin.
 
       VL3 and SS328-leu with the QDR2 from VL3, having the MC-transporter for microcystin would have highest catalase activities in the presence of microcystin.
Line 315: Line 295:
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
    <h2>
+
     </div>
      Protocols
+
     </h2>
+
    <br/>
+
    <p class="justify" style="font-size:19px;">
+
      For precise descriptions about assays and molecular biology methods, please find our protocols. We have included here all the protocols we have used in our lab work.
+
      <br/>
+
      Link to protocols: xxxx
+
      <br/>
+
      <br/>
+
    </p>
+
    </div>
+
    <br/>
+
 
     <div class="sectionjee" style="background-color: #8a4b29">
 
     <div class="sectionjee" style="background-color: #8a4b29">
     <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
+
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
+
       Our sensor is based on detecting differences in fluorescence
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 342: Line 310:
 
     <br/>
 
     <br/>
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
    <br/>
+
     <h1 id="TWO">
     <h1 id="THREE">
+
       Results - Detection
       Results
+
 
     </h1>
 
     </h1>
 
     <br/>
 
     <br/>
     <h2>
+
     <br/>
       Detection
+
    <figure style="text-align: center">
     </h2>
+
       <img src="/wiki/images/e/e1/T--Aalto-Helsinki--kaava1.png" style="width:50%; height: 90%;"/>
 +
    </figure>
 +
     <br/>
 
     <br/>
 
     <br/>
 
     <h3>
 
     <h3>
Line 450: Line 419:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/9/9b/T--Aalto-Helsinki--results2.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/9/9b/T--Aalto-Helsinki--results2.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 6. Effect of different H
 
       Figure 6. Effect of different H
 
       <sub>
 
       <sub>
Line 465: Line 434:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       Attempts were made to produce a second negative control by performing measurements with the basic yeast strain without plasmid. However, for some reason the growth of this strain was extremely poor when grown on the same medium where stress promoter constructs were cultured (SD-medium; for plasmid-free strain, leucine was supplemented to the medium, as leucine auxotrophy was used for plasmid selection). As e.g. YPD medium is unsuitable for direct cell culture fluorescence measurements, we didn’t obtain this additional control. A better alternative would have been having an empty, non-YFP producing plasmid in the negative control, but we decided to make do with our existing controls.
+
       Attempts were made to produce a second negative control by performing measurements with the basic yeast strain without plasmid. However, for some reason the growth of this strain was extremely poor when grown on the same medium where stress promoter constructs were cultured (SD-medium; for plasmid-free strain, leucine was supplemented to the medium, as leucine auxotrophy was used for plasmid selection). As e.g. YPD medium is unsuitable for direct cell culture fluorescence measurements, we didn’t obtain this additional control. A better alternative would have been having an empty, non-YFP producing plasmid in the negative control, but we decided to make do with our existing controls due to time constaints.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 475: Line 444:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/5/5d/T--Aalto-Helsinki--results3.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/5/5d/T--Aalto-Helsinki--results3.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 7. Effect of different H
 
       Figure 7. Effect of different H
 
       <sub>
 
       <sub>
Line 504: Line 473:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/6/6a/T--Aalto-Helsinki--results4.png" style="width:50%; height: 50%;"/>
 
       <img src="/wiki/images/6/6a/T--Aalto-Helsinki--results4.png" style="width:50%; height: 50%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 8. Fluorescence produced under TSA1 promoter in different H
 
       Figure 8. Fluorescence produced under TSA1 promoter in different H
 
       <sub>
 
       <sub>
Line 584: Line 553:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/d/d5/T--Aalto-Helsinki--results7.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/d/d5/T--Aalto-Helsinki--results7.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 10. Effect of different H
 
       Figure 10. Effect of different H
 
       <sub>
 
       <sub>
Line 605: Line 574:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/d/d5/T--Aalto-Helsinki--results8.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/d/d5/T--Aalto-Helsinki--results8.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 11.  Effect of different H
 
       Figure 11.  Effect of different H
 
       <sub>
 
       <sub>
Line 626: Line 595:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/d/d7/T--Aalto-Helsinki--results9.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/d/d7/T--Aalto-Helsinki--results9.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 12.  Effect of 0 mM H
 
       Figure 12.  Effect of 0 mM H
 
       <sub>
 
       <sub>
Line 677: Line 646:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/9/9b/T--Aalto-Helsinki--results10.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/9/9b/T--Aalto-Helsinki--results10.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 13. Fluorescence produced by the different promoters after 2 h induction (left) and 4 h (right) as a function of H
 
       Figure 13. Fluorescence produced by the different promoters after 2 h induction (left) and 4 h (right) as a function of H
 
       <sub>
 
       <sub>
Line 698: Line 667:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/f/f0/T--Aalto-Helsinki--results100.png" style="width:100%; height: 100%;"/>
 
       <img src="/wiki/images/f/f0/T--Aalto-Helsinki--results100.png" style="width:100%; height: 100%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 14. Fluorescence produced by the different promoters after 2 h induction (left) and 4 h (right) normalized to the uninduced values, as a function of H
 
       Figure 14. Fluorescence produced by the different promoters after 2 h induction (left) and 4 h (right) normalized to the uninduced values, as a function of H
 
       <sub>
 
       <sub>
Line 793: Line 762:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/1/13/T--Aalto-Helsinki--results12.png" style="width:20%; height: 20%;"/>
 
       <img src="/wiki/images/1/13/T--Aalto-Helsinki--results12.png" style="width:20%; height: 20%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 16. Western blot gel of step-tagged transporter construct. SS328-leu + QDR2 is the transporter containing C-terminal strep-tag. SS328-leu without transporter is used as a negative control. Both P and S samples are obtained after cell lysis and centrifugation: S is the soluble supernatant and P is the pellet. MW is the molecular weight marker.
 
       Figure 16. Western blot gel of step-tagged transporter construct. SS328-leu + QDR2 is the transporter containing C-terminal strep-tag. SS328-leu without transporter is used as a negative control. Both P and S samples are obtained after cell lysis and centrifugation: S is the soluble supernatant and P is the pellet. MW is the molecular weight marker.
 
       </figcaption>
 
       </figcaption>
Line 834: Line 803:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/9/90/T--Aalto-Helsinki--results13.png" style="width:70%; height: 70%;"/>
 
       <img src="/wiki/images/9/90/T--Aalto-Helsinki--results13.png" style="width:70%; height: 70%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 17. Results from visual catalase assay with H
 
       Figure 17. Results from visual catalase assay with H
 
       <sub>
 
       <sub>
Line 852: Line 821:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/7/78/T--Aalto-Helsinki--results14.png" style="width:40%; height: 40%;"/>
 
       <img src="/wiki/images/7/78/T--Aalto-Helsinki--results14.png" style="width:40%; height: 40%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 18. Comparison of foam layer thicknesses from the results of figure 14. The relative foam thickness, which corresponds to relative catalase activity, is calculated by dividing the height of foam layer with the diameter of the tube. The error (10%) is an estimate based on earlier experiments.
 
       Figure 18. Comparison of foam layer thicknesses from the results of figure 14. The relative foam thickness, which corresponds to relative catalase activity, is calculated by dividing the height of foam layer with the diameter of the tube. The error (10%) is an estimate based on earlier experiments.
 
       </figcaption>
 
       </figcaption>
Line 911: Line 880:
 
     <br/>
 
     <br/>
 
     <br/>
 
     <br/>
     <h2>
+
    </div>
       Degradation
+
    <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
     </h2>
+
     <h1 id="THREE">
 +
       Results - Degradation
 +
     </h1>
 +
    <br/>
 +
    <br/>
 +
    <figure style="text-align: center">
 +
      <img src="/wiki/images/1/19/T--Aalto-Helsinki--kaava2.png" style="width:60%; height: 90%;"/>
 +
    </figure>
 
     <br/>
 
     <br/>
 
     <br/>
 
     <br/>
Line 997: Line 973:
 
     <figure style="text-align:center">
 
     <figure style="text-align:center">
 
       <img src="/wiki/images/6/62/T--Aalto-Helsinki--1.png" style="width:30%; height: 30%;"/>
 
       <img src="/wiki/images/6/62/T--Aalto-Helsinki--1.png" style="width:30%; height: 30%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 20. Western blot from initial MlrAE expression. Based on the western blot, we expressed a protein of about 28 kDa, which corresponds to the expected size of MlrA. The molecular weight standards (MW) are attached here from the digitized version of this blot. BI - before induction, AI - after induction, S1 - supernatant after expression culture is spinned down, P2 - pellet after cell lysis with sonication and spin, S2.1 - supernatant after cell lysis with glass beads and spin, S2.2 - supernatant after cell lysis with sonication and spin.
 
       Figure 20. Western blot from initial MlrAE expression. Based on the western blot, we expressed a protein of about 28 kDa, which corresponds to the expected size of MlrA. The molecular weight standards (MW) are attached here from the digitized version of this blot. BI - before induction, AI - after induction, S1 - supernatant after expression culture is spinned down, P2 - pellet after cell lysis with sonication and spin, S2.1 - supernatant after cell lysis with glass beads and spin, S2.2 - supernatant after cell lysis with sonication and spin.
 
       </figcaption>
 
       </figcaption>
Line 1,014: Line 990:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/d/d5/T--Aalto-Helsinki--2.png" style="width:50%; height: 50%;"/>
 
       <img src="/wiki/images/d/d5/T--Aalto-Helsinki--2.png" style="width:50%; height: 50%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 21. Western blot of different purification fractions from initial purification of MlrAE. The protein came out in the flow through fractions. FT - flow through, W - wash, E - elution.
 
       Figure 21. Western blot of different purification fractions from initial purification of MlrAE. The protein came out in the flow through fractions. FT - flow through, W - wash, E - elution.
 
       </figcaption>
 
       </figcaption>
Line 1,076: Line 1,052:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/6/69/T--Aalto-Helsinki--4.png" style="width:40%; height: 40%;"/>
 
       <img src="/wiki/images/6/69/T--Aalto-Helsinki--4.png" style="width:40%; height: 40%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 23. Western blot of purification of MlrAE without imidazole in the loading buffer. The enzyme came out in the flow through fractions. FT - flow through, W - wash, E - elution.
 
       Figure 23. Western blot of purification of MlrAE without imidazole in the loading buffer. The enzyme came out in the flow through fractions. FT - flow through, W - wash, E - elution.
 
       </figcaption>
 
       </figcaption>
Line 1,083: Line 1,059:
 
     <br/>
 
     <br/>
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
       <img src="1" style="width:40%; height: 40%;"/>
+
       <img src="/wiki/images/9/99/T--Aalto-Helsinki--5.png" style="width:40%; height: 40%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 24. Western blot of purification of MlrAE with denaturing conditions.The enzyme came out in the flow through fractions. FT - flow through, W - wash, E - elution.
 
       Figure 24. Western blot of purification of MlrAE with denaturing conditions.The enzyme came out in the flow through fractions. FT - flow through, W - wash, E - elution.
 
       </figcaption>
 
       </figcaption>
Line 1,108: Line 1,084:
 
       <img src="/wiki/images/0/0e/T--Aalto-Helsinki--6a.png" style="width:60%; height: 60%;"/>
 
       <img src="/wiki/images/0/0e/T--Aalto-Helsinki--6a.png" style="width:60%; height: 60%;"/>
 
       <img src="/wiki/images/a/ab/T--Aalto-Helsinki--6b.png" style="width:10%; height: 10%;"/>
 
       <img src="/wiki/images/a/ab/T--Aalto-Helsinki--6b.png" style="width:10%; height: 10%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 25a and 25b. The chromatogram from FPLC. The blue line corresponds to UV (280nm) reading, and the green line to the concentration elution buffer. A small hill was observed within the eluted fractions (6b), with the peak in fraction A.3-C.3.
 
       Figure 25a and 25b. The chromatogram from FPLC. The blue line corresponds to UV (280nm) reading, and the green line to the concentration elution buffer. A small hill was observed within the eluted fractions (6b), with the peak in fraction A.3-C.3.
 
       </figcaption>
 
       </figcaption>
Line 1,121: Line 1,097:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/e/e1/T--Aalto-Helsinki--7.png" style="width:40%; height: 40%;"/>
 
       <img src="/wiki/images/e/e1/T--Aalto-Helsinki--7.png" style="width:40%; height: 40%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 26. Western blot of FPLC purification fractions, LAD (the molecular weight standard) is drawn since we weren’t able to get it clearly visible with adjusting the picture settings. AI S - supernatant fraction after cell lysis, AI P - pellet fraction after cell lysis, A1-C2 fractions from the FPLC, check figure 25a. About 28 kDa protein in the A1, B1, C1 fractions which correspond to the flow through fractions.
 
       Figure 26. Western blot of FPLC purification fractions, LAD (the molecular weight standard) is drawn since we weren’t able to get it clearly visible with adjusting the picture settings. AI S - supernatant fraction after cell lysis, AI P - pellet fraction after cell lysis, A1-C2 fractions from the FPLC, check figure 25a. About 28 kDa protein in the A1, B1, C1 fractions which correspond to the flow through fractions.
 
       </figcaption>
 
       </figcaption>
Line 1,129: Line 1,105:
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
 
       <img src="/wiki/images/b/be/T--Aalto-Helsinki--8.png" style="width:70%;"/>
 
       <img src="/wiki/images/b/be/T--Aalto-Helsinki--8.png" style="width:70%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 27: Western blot (left) and SDS-PAGE (right) of FPLC purification fractions. D2 - B4 fractions from FPLC, check figure 25a, MW - molecular weight standard. There are proteins in the elution fractions that have been detected by the anti-His antibody, and there seems to be a right sized protein also (about 28 kDa), most of it being in the C3 fraction.
 
       Figure 27: Western blot (left) and SDS-PAGE (right) of FPLC purification fractions. D2 - B4 fractions from FPLC, check figure 25a, MW - molecular weight standard. There are proteins in the elution fractions that have been detected by the anti-His antibody, and there seems to be a right sized protein also (about 28 kDa), most of it being in the C3 fraction.
 
       </figcaption>
 
       </figcaption>
Line 1,172: Line 1,148:
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
 
       <b>
 
       <b>
       Optimising yeast growth conditions
+
       Optimizing yeast growth conditions
 
       </b>
 
       </b>
 
     </p>
 
     </p>
Line 1,205: Line 1,181:
 
     <br/>
 
     <br/>
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
       <img src="3" style="width:40%; height: 40%;"/>
+
       <img src="/wiki/images/1/18/T--Aalto-Helsinki--10.png" style="width:40%; height: 40%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 29. Western blot of different yeast MlrA constructs. pAH12 refers to MlrAY, pAH13 is MlrAYa, pAH14 is MlrAY3a, S1 - the growth medium, CL - cell lysate, S2 - supernatant from CL and P2 - pellet from CL.
 
       Figure 29. Western blot of different yeast MlrA constructs. pAH12 refers to MlrAY, pAH13 is MlrAYa, pAH14 is MlrAY3a, S1 - the growth medium, CL - cell lysate, S2 - supernatant from CL and P2 - pellet from CL.
 
       </figcaption>
 
       </figcaption>
Line 1,279: Line 1,255:
 
     <br/>
 
     <br/>
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
       <img src="1" style="width:40%; height: 40%;"/>
+
       <img src="/wiki/images/a/a6/T--Aalto-Helsinki--12.png" style="width:40%; height: 40%;"/>
       <figcaption style="text-align: left">
+
       <figcaption style="text-align: center">
 
       Figure 31. Western blot of localization experiment. The enzymes seem to localize in the insoluble fraction. LAD - molecular weight, NC - negative control S. cerevisiae SS328-leu without mlrA gene, S1 - growth medium, S2 - supernatant after cell lysis, P2 - pellet after cell lysis, S3 - re-folded proteins, P3 - plasma membrane + cell wall, S4 - soluble protein, P4 - inner membranes.
 
       Figure 31. Western blot of localization experiment. The enzymes seem to localize in the insoluble fraction. LAD - molecular weight, NC - negative control S. cerevisiae SS328-leu without mlrA gene, S1 - growth medium, S2 - supernatant after cell lysis, P2 - pellet after cell lysis, S3 - re-folded proteins, P3 - plasma membrane + cell wall, S4 - soluble protein, P4 - inner membranes.
 
       </figcaption>
 
       </figcaption>
Line 1,324: Line 1,300:
 
     <br/>
 
     <br/>
 
     <figure style="text-align: center">
 
     <figure style="text-align: center">
       <img src="1" style="width:40%; height: 40%;"/>
+
       <img src="/wiki/images/2/25/T--Aalto-Helsinki--14.png" style="width:40%; height: 40%;"/>
 
       <figcaption style="text-align: center">
 
       <figcaption style="text-align: center">
 
       Figure 33. Enzymatic activity of MlrAYa. Results show that the 1:10 dilution has the highest activity whereas 1:1000 has the lowest.
 
       Figure 33. Enzymatic activity of MlrAYa. Results show that the 1:10 dilution has the highest activity whereas 1:1000 has the lowest.
Line 1,339: Line 1,315:
 
     </p>
 
     </p>
 
     <h2>
 
     <h2>
       Lab book
+
       Protocols and lab book
 
     </h2>
 
     </h2>
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       In our lab book, you can find out everything we have done in the lab. The lab book is divided into four different subfolders according to different parts of our work. These subfolders are Microcystinase (MlrA), Promoter, Transporter and BioBricks. All the folders are ordered so that the newest experiments come first.
+
       If you are interested in viewing or using our protocols, more details on how we have conducted our experiments, or want to view our lab notes, email us at team [a] aaltohelsinki . com .
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
      Link to lab book: xxxxxx
 
      <br/>
 
      <br/>
 
    </p>
 
 
     </div>
 
     </div>
 +
    <br/>
 
     <br/>
 
     <br/>
 
     <div class="sectionjee" style="background-color: #8a4b29">
 
     <div class="sectionjee" style="background-color: #8a4b29">
     <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
+
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
+
       Our assumption was that if the enzymes have activity, they are most probably localized in the plasma membrane in an active form
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 1,363: Line 1,336:
 
     <br/>
 
     <br/>
 
     </div>
 
     </div>
 +
    <br/>
 
     <br/>
 
     <br/>
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
Line 1,377: Line 1,351:
 
       page.
 
       page.
 
     </p>
 
     </p>
 +
    <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
 
       Our work mainly involved safety level 1 practices; all organisms that we used belong to biosafety level 1. We worked with
 
       Our work mainly involved safety level 1 practices; all organisms that we used belong to biosafety level 1. We worked with
Line 1,416: Line 1,391:
 
     <br/>
 
     <br/>
 
     <div class="sectionjee" style="background-color: #8a4b29">
 
     <div class="sectionjee" style="background-color: #8a4b29">
     <h2 style="float:left; margin-left:100px; padding-top: 5px; font-family: im_fell_french_canon_proIt; font-size: 40px;">
+
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       Cyanobacteria range in size from 0.5 to 60 micrometers in diameter which represents one of the largest prokaryotic organism.
+
       Our safety training has included topics such as disposal of GMO waste, chemical work, emergency prevention and what to do in case of emergency
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 1,429: Line 1,404:
 
     <br/>
 
     <br/>
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
     <h2>
+
     <h1 id="FIVE">
 
       References
 
       References
     </h2>
+
     </h1>
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
Line 1,474: Line 1,449:
 
     <script src="./Tinyone - HTML_files/offcanvas.js"></script>
 
     <script src="./Tinyone - HTML_files/offcanvas.js"></script>
 
     <script src="./Tinyone - HTML_files/function.js"></script-->
 
     <script src="./Tinyone - HTML_files/function.js"></script-->
   <div class="navbar navbar-fixed-bottom navbar-default">
+
   <div class="navbar navbar-fixed-bottom navbar-default" style="text-align: center;">
   <ul class="botnav" style="padding-left: 32%;">
+
   <ul class="botnav" style="margin: 0 auto;">
 
     <progress id="progressbar" value="0">
 
     <progress id="progressbar" value="0">
 
     </progress>
 
     </progress>

Latest revision as of 08:35, 5 December 2016

Aalto-Helsinki

Laboratory