Difference between revisions of "Team:Aalto-Helsinki/Laboratory"

m
 
(13 intermediate revisions by 2 users not shown)
Line 29: Line 29:
 
   <div style="height:100%">
 
   <div style="height:100%">
 
   <section class="sciencephoto parallax" style="text-align: center">
 
   <section class="sciencephoto parallax" style="text-align: center">
     <h2 class="title">
+
     <h2 class="title" style="padding-top: 0;">
 
     Laboratory
 
     Laboratory
 
     </h2>
 
     </h2>
Line 106: Line 106:
 
   <div class="block-wrapper-inner" style="padding-top: 15px;">
 
   <div class="block-wrapper-inner" style="padding-top: 15px;">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 
     <div class="container" style="width: 75%; font-family: robotolight; color: #4d4d33">
 +
    <br/>
 +
    <br/>
 +
    <br/>
 +
    <br/>
 +
    <br/>
 
     <h1 id="ONE">
 
     <h1 id="ONE">
 
       Assays
 
       Assays
Line 122: Line 127:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       For measuring fluorescence, we decided to use a microplate reader (Cytation3, BioTek) in order to be able to easily monitor the development of the fluorescence. In our microplate reader experiments, liquid cultures of yeast cells containing the stress promoter plasmids were induced with different concentrations of hydrogen peroxide on a 96-well plate. The plate is sealed with an optically clear cover, and incubated in the microplate reader at +30 °C with vertical shaking. Yeast has a tendency to clump when grown in microtiter plates, but vigorous vertical shaking is suitable for limiting this. OD600 and fluorescence values can then be measured throughout the growth of the cultures at defined intervals to observe the development of fluorescence and obtain an expression profile for the newly  constructed stress promoters.
+
       For measuring fluorescence, we decided to use a microplate reader (Cytation3, BioTek) in order to be able to easily monitor the development of the fluorescence. In our microplate reader experiments, liquid cultures of yeast cells containing the stress promoter plasmids were induced with different concentrations of hydrogen peroxide on a 96-well plate. The plate was sealed with an optically clear cover, and incubated in the microplate reader at +30 °C with vertical shaking. Yeast has a tendency to clump when grown in microtiter plates, but vigorous vertical shaking is suitable for limiting this. OD600 and fluorescence values can then be measured throughout the growth of the cultures at defined intervals to observe the development of fluorescence and obtain an expression profile for the newly  constructed stress promoters.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 130: Line 135:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       From the plate reader results, multiple different curves could be drawn. Plots of OD600 and fluorescence as functions of time are straightforward to draw, but as hydrogen peroxide slows the cell growth significantly, comparisons of fluorescence values at any given time point would not be informative in telling about the amount of fluorescence produced by the cells. A more representative graph would thus be one where fluorescence is presented as the function of cell density (OD600); this way, fluorescence signals given by cell populations of equal density can be compared.  All the sample values can then be compared to an uninduced control and to a positive control (Venus under GDP1 promoter). As our sensor is based on detecting differences between fluorescence in induced and uninduced conditions, we can use Venus under GPD promoter dually also as a negative control; with this negative control, we see whether H
+
       From the plate reader results, multiple different curves could be drawn. Plots of OD600 and fluorescence as functions of time are straightforward to draw, but as hydrogen peroxide slows the cell growth significantly, comparisons of fluorescence values at any given time point would not be informative in telling about the amount of fluorescence produced by the cells. A more representative graph would thus be one where fluorescence is presented as the function of cell density (OD600); this way, fluorescence signals given by cell populations of equal density can be compared.  All the sample values can then be compared to an uninduced control and to a positive control (Venus under GDP1 promoter). As our sensor is based on detecting differences in fluorescence between induced and uninduced conditions, we can use Venus under GPD promoter dually also as a negative control; with this negative control, we see whether H
 
       <sub>
 
       <sub>
 
       2
 
       2
Line 142: Line 147:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       As a second method for measuring fluorescence, we used a flow cytometer (FACSaria III, BDBiosciences). In flow cytometry, the fluorescence can be measured from individual cells in a cell suspension. The fluorescent signal of thousands of cells can be rapidly measured to produce information on the mean or median fluorescence values and distribution of fluorescence. This means that the development of the fluorescence as a function of time can’t be assessed as easily, as samples of each measured time point have to be prepared separately. However,  more precise values are obtained, with less bias from background. To analyze fluorescence, induction is performed by adding hydrogen peroxide to a cell culture to the desired concentration, and incubating the cell cultures at +30 °C with shaking (220-250rpm). A sample of cells can then be collected from the cell culture, and diluted to a an appropriate cell density in PBS for analysis with the flow cytometer.
+
       As a second method for measuring fluorescence, we used a flow cytometer (FACSaria III, BDBiosciences). In flow cytometry, the fluorescence can be measured from individual cells in a cell suspension. The fluorescent signal of thousands of cells can be rapidly measured to produce information on the mean or median fluorescence values and distribution of fluorescence. This means that the development of the fluorescence as a function of time can’t be assessed as easily, as samples of each measured time point have to be prepared separately. However,  more precise values are obtained, with less bias from background. To analyze fluorescence, induction is performed by adding hydrogen peroxide to a cell culture to the desired concentration, and incubating the cell cultures at +30 °C with shaking. A sample of cells can then be collected from the cell culture, and diluted to a an appropriate cell density in PBS for analysis with the flow cytometer.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 290: Line 295:
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
    <h2>
+
     </div>
      Protocols
+
     </h2>
+
    <br/>
+
    <p class="justify" style="font-size:19px;">
+
      For precise descriptions about assays and molecular biology methods, please find our protocols. We have included here all the protocols we have used in our lab work.
+
      <br/>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/2/29/T--Aalto-Helsinki--Bacterial_transformation_for_One_Shot_cells.pdf" style="color:#800000">
+
      Bacterial transformation for One Shot cells
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/3/33/T--Aalto-Helsinki--Bacterial_Transformation.pdf" style="color:#800000">
+
      Bacterial Transformation
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/b/ba/T--Aalto-Helsinki--Casting_SDS-PAGE_gel.pdf" style="color:#800000">
+
      Bacterial Transformation
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/5/5e/T--Aalto-Helsinki--Competent_yeast_cells_%2B_LiAc_transformation_from_liquid_culture.pdf" style="color:#800000">
+
      Competent yeast cells + LiAc transformation from liquid culture
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/2/2b/T--Aalto-Helsinki--DNAsert_Ligation_Vector_DNA_UG.pdf" style="color:#800000">
+
      DNA Insert Ligation (sticky-end and blunt-end) into Vector DNA
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/b/b5/T--Aalto-Helsinki--DreamTaq_Green_PCR_MasterMix.pdf" style="color:#800000">
+
      DreamTaq Green PCR Master Mix
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/e/e1/T--Aalto-Helsinki--E._coli_heat-shock_competent_cells.pdf" style="color:#800000">
+
      E. coli heat-shock competent cells
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/7/73/T--Aalto-Helsinki--Electroporation.pdf" style="color:#800000">
+
      Electroporation
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/4/45/T--Aalto-Helsinki--Enzyme_activity_samples.pdf" style="color:#800000">
+
      Enzyme activity samples
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/5/5e/T--Aalto-Helsinki--GeneJET_Gel_Extraction_UG.pdf" style="color:#800000">
+
      GeneJET Gel Extraction Kit
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/e/ee/T--Aalto-Helsinki--KAPA_HiFi_HotStart_ReadyMix_TDS.pdf" style="color:#800000">
+
      KAPA HiFi HotStart ReadyMix PCR Kit
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/6/68/T--Aalto-Helsinki--magicmedia_man.pdf" style="color:#800000">
+
      MagicMedia
+
      <sup>
+
        TM
+
      </sup>
+
      E. coli Expression Medium
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/d/dd/T--Aalto-Helsinki--MAN0011699_HisPur_NiNTA_SpinColumn_UG.pdf" style="color:#800000">
+
      HisPur
+
      <sup>
+
        TM
+
      </sup>
+
      Ni-NTA Spin Columns
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/6/60/T--Aalto-Helsinki--MC_extract.pdf" style="color:#800000">
+
      MC extract
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/d/dd/T--Aalto-Helsinki--Microsome_preparation.pdf" style="color:#800000">
+
      Microsome preparation
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/8/8b/T--Aalto-Helsinki--Minimal_media_for_selective_purposes.pdf" style="color:#800000">
+
      Minimal media for selective purposes
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/c/c7/T--Aalto-Helsinki--nebuilder-hifi-dna-assembly-chemical-transformation-protocol-e2621.pdf" style="color:#800000">
+
      NEBuilder hifi DNA assembly chemical transformation protocol (E2621)
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/c/c5/T--Aalto-Helsinki--nebuilder-hifi-dna-assembly-reaction-protocol.pdf" style="color:#800000">
+
      NEBuilder hifi DNA assembly reaction protocol
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/6/61/T--Aalto-Helsinki--Phusion_HighFidelity_DNAPolymerase.pdf" style="color:#800000">
+
      Thermo Scientific Phusion High-Fidelity DNA Polymerase
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/8/8e/T--Aalto-Helsinki--Phusion_HotStartII_HiFi_PCR_MasterMix.pdf" style="color:#800000">
+
      Thermo Scientific Phusion Hot Start II High-Fidelity Master Mix
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/e/ee/T--Aalto-Helsinki--Protein_production_in_E._coli.pdf" style="color:#800000">
+
      Protein production in E. coli
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/c/c0/T--Aalto-Helsinki--Protein_refolding_from_pellet_samples.pdf" style="color:#800000">
+
      Protein refolding from pellet samples
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/c/ca/T--Aalto-Helsinki--Restriction_Digest.pdf" style="color:#800000">
+
      Restriction Digest
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/a/ab/T--Aalto-Helsinki--Resuspending_gBlocks.pdf" style="color:#800000">
+
      Resuspending gBlocks
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/a/a8/T--Aalto-Helsinki--Resuspending_primers.pdf" style="color:#800000">
+
      Resuspending primers
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/2/20/T--Aalto-Helsinki--Running_SDS-PAGE_gels.pdf" style="color:#800000">
+
      Running SDS-PAGE gels
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="2" style="color:#800000">
+
      PCR clean-up Gel extraction
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/e/e8/T--Aalto-Helsinki--UM_pDNA_NS.pdf" style="color:#800000">
+
      Plasmid DNA puri cation
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/f/f8/T--Aalto-Helsinki--Visualization_of_proteins_in_SDS-PAGE_gels%2C_Coomassie_blue_staining.pdf" style="color:#800000">
+
      Visualization of proteins in SDS-PAGE gels, Coomassie blue staining
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/1/1c/T--Aalto-Helsinki--Western_blot.pdf" style="color:#800000">
+
      Western blot
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/7/7c/T--Aalto-Helsinki--Yeast_Catalase_Tests.pdf" style="color:#800000">
+
      Yeast Catalase Tests
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/3/37/T--Aalto-Helsinki--Yeast_Cell_Lysis.pdf" style="color:#800000">
+
      Yeast Cell Lysis
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="4" style="color:#800000">
+
      Yeast DNA Prep
+
      </a>
+
    </p>
+
    <p class="justify" style="font-size:19px;">
+
      <a class="index" href="/wiki/images/6/63/T--Aalto-Helsinki--Yeast_Galactose_Induction.pdf" style="color:#800000">
+
      Yeast Galactose Induction
+
      </a>
+
    </p>
+
    <br/>
+
    </div>
+
    <br/>
+
    <br/>
+
 
     <div class="sectionjee" style="background-color: #8a4b29">
 
     <div class="sectionjee" style="background-color: #8a4b29">
 
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
     <h2 style="font-family: im_fell_french_canon_proIt; font-size: 20px;">
 
       “
 
       “
 
       <i style="font-family: robotolight; font-size: 19px;">
 
       <i style="font-family: robotolight; font-size: 19px;">
       As our sensor is based on detecting differences between fluorescence
+
       Our sensor is based on detecting differences in fluorescence
 
       </i>
 
       </i>
 
       ”
 
       ”
Line 618: Line 434:
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       Attempts were made to produce a second negative control by performing measurements with the basic yeast strain without plasmid. However, for some reason the growth of this strain was extremely poor when grown on the same medium where stress promoter constructs were cultured (SD-medium; for plasmid-free strain, leucine was supplemented to the medium, as leucine auxotrophy was used for plasmid selection). As e.g. YPD medium is unsuitable for direct cell culture fluorescence measurements, we didn’t obtain this additional control. A better alternative would have been having an empty, non-YFP producing plasmid in the negative control, but we decided to make do with our existing controls.
+
       Attempts were made to produce a second negative control by performing measurements with the basic yeast strain without plasmid. However, for some reason the growth of this strain was extremely poor when grown on the same medium where stress promoter constructs were cultured (SD-medium; for plasmid-free strain, leucine was supplemented to the medium, as leucine auxotrophy was used for plasmid selection). As e.g. YPD medium is unsuitable for direct cell culture fluorescence measurements, we didn’t obtain this additional control. A better alternative would have been having an empty, non-YFP producing plasmid in the negative control, but we decided to make do with our existing controls due to time constaints.
 
     </p>
 
     </p>
 
     <br/>
 
     <br/>
Line 1,332: Line 1,148:
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
 
       <b>
 
       <b>
       Optimising yeast growth conditions
+
       Optimizing yeast growth conditions
 
       </b>
 
       </b>
 
     </p>
 
     </p>
Line 1,499: Line 1,315:
 
     </p>
 
     </p>
 
     <h2>
 
     <h2>
       Lab book
+
       Protocols and lab book
 
     </h2>
 
     </h2>
 
     <br/>
 
     <br/>
 
     <p class="justify" style="font-size:19px;">
 
     <p class="justify" style="font-size:19px;">
       In our lab book, you can find out everything we have done in the lab. The lab book is divided into four different subfolders according to different parts of our work. These subfolders are Microcystinase (MlrA), Promoter, Transporter and BioBricks. All the folders are ordered so that the newest experiments come first.
+
       If you are interested in viewing or using our protocols, more details on how we have conducted our experiments, or want to view our lab notes, email us at team [a] aaltohelsinki . com .
 
       <br/>
 
       <br/>
 
       <br/>
 
       <br/>
      Links to lab books:
 
    </p>
 
    <p class="justify" style="font-size:19px;">
 
      <a class="index" href="/wiki/images/f/fe/T--Aalto-Helsinki--Entries2.pdf" style="color:#800000">
 
      Microcystinase
 
      </a>
 
    </p>
 
    <p class="justify" style="font-size:19px;">
 
      <a class="index" href="/wiki/images/3/3d/T--Aalto-Helsinki--Entries3.pdf" style="color:#800000">
 
      Promoter
 
      </a>
 
    </p>
 
    <p class="justify" style="font-size:19px;">
 
      <a class="index" href="/wiki/images/1/1a/T--Aalto-Helsinki--Entries4.pdf" style="color:#800000">
 
      Transporter
 
      </a>
 
    </p>
 
    <p class="justify" style="font-size:19px;">
 
      <a class="index" href="/wiki/images/6/6f/T--Aalto-Helsinki--Entries.pdf" style="color:#800000">
 
      BioBricks
 
      </a>
 
    </p>
 
 
     </div>
 
     </div>
 
     <br/>
 
     <br/>

Latest revision as of 08:35, 5 December 2016

Aalto-Helsinki

Laboratory