Difference between revisions of "Team:UCL/James/Description"

Line 99: Line 99:
 
                         </div>
 
                         </div>
 
                         <div class="section-spacer"></div>
 
                         <div class="section-spacer"></div>
                        <div class="section" id="delivery">
 
                            <div class="slim">
 
                                <h2>Delivery</h2>
 
                                <p>
 
                                    A major part of our project involves investigating what is the best way to deliver our
 
                                    biofilm-degrading and antimicrobial enzymes to the site of infection in the urinary tract.
 
                                </p>
 
                                <p>
 
                                    As we have mentioned above, patients with recurrent, complicated cases of UTI often get
 
                                    their infections from an already-inserted catheter which may have to be there and cannot be
 
                                    removed for a variety of other medical reasons. In view of that, we decided to conceptualize
 
                                    an initial delivery method which was centered on the catheter.
 
                                </p>
 
                                <p>
 
                                    Our AlgiBeads design involves encapsulating our therapeutic, enzyme-secreting bacteria in
 
                                    sodium alginate beads. These beads are immobilized in a modified section of a catheter, from
 
                                    which the bacteria can secrete the therapeutic enzymes into the infected urinary tract. On
 
                                    our <a href="https://2015.igem.org/Team:Oxford/Design">Design</a> page, thorough
 
                                    consideration was given to the AlgiBeads delivery method, including issues of safety and
 
                                    practicality.
 
                                </p>
 
                                <p>
 
                                    However, based on some preliminary data obtained for gene expression and diffusion rates,
 
                                    our <a href="https://2015.igem.org/Team:Oxford/Modeling">computational models</a> predicted
 
                                    that the equilibrium concentration of enzymes in solution based on the AlgiBeads delivery
 
                                    method would be too low when compared against the known concentrations required for biofilm
 
                                    degradation.
 
                                </p>
 
                                <p>
 
                                    As such, we have had to instead consider an alternative delivery method - the introduction
 
                                    of our enzyme-releasing therapeutic engineered bacteria into the urinary microbiome, whereby
 
                                    the problem of low enzyme concentration in solution will be overcome by the close proximity
 
                                    between the therapeutic bacteria and the pathogenic bacteria. Another benefit of having
 
                                    therapeutic bacteria as part of the microbiome is of course that the treatment becomes
 
                                    preventive in nature, with the therapeutic bacteria now part of the bacterial community in
 
                                    the body constantly releasing pathogen-killing enzymes.
 
                                </p>
 
                                <p>
 
                                    Of course, altering the microbiome comes with its own set of hazards, and we hope to
 
                                    mitigate it at least in part by doubling up the pathogen-killing mechanism as a population
 
                                    control mechanism for the engineered bacteria as well:
 
                                </p>
 
                                <div class="image image-full" style="object-align:center">
 
                                    <img src="https://static.igem.org/mediawiki/2015/7/79/Oxford-animatiom.gif">
 
                                    <p>
 
                                        How our 3-part engineered microbe works:
 
                                        <br>1. Constant secretion of biofilm-degrading enzyme
 
                                        <br>2. Production and accumulation of antibacterial Art-175
 
                                        <br>3. Detection of pathogenic bacteria via quorum sensing
 
                                        <br>4. Permeabilization of inner membrane by T4 Holin
 
                                        <br>5. Access and lysis of host cell wall by Art-175
 
                                        <br>6. Release of Art-175 and lysis of target cell
 
                                    </p>
 
                                </div>
 
                                <p>
 
                                    Art-175 is normally prevented from reaching the cell wall of the expression host by the
 
                                    inner membrane. When a large amount of pathogenic bacteria is present, the quorum sensing
 
                                    signals trigger the production of T4 Holin, which permeabilizes the inner membrane, allowing
 
                                    Art-175 to reach the cell wall and degrade it. This causes lysis of the host cell and
 
                                    releases the accumulated Art-175 in a single high-concentration pulse, killing the
 
                                    pathogenic bacteria and achieving population control of the expression host at the same
 
                                    time.
 
                                </p>
 
                                <p>
 
                                    Other safety aspects of this microbiome-modification design, including issues on
 
                                    immunogenicity, can be found <a
 
                                        href="https://2015.igem.org/Team:Oxford/UTB#Urinary_Tract_Biome">here</a>.
 
                                </p>
 
                            </div>
 
                            <div class="section-spacer"></div>
 
                            <div class="section" id="results">
 
                                <div class="slim">
 
                                    <h2>Results</h2>
 
                                    <p>
 
                                        Through our experimental work we were able to obtain preliminary evidence suggesting the
 
                                        validity of these points:
 
                                    </p>
 
                                    <ul>
 
                                        <li>DsbA-DNase and DsbA-DspB can be secreted in a fully folded and functional state</li>
 
                                        <li>Both DNase and DspB are able to degrade biofilms</li>
 
                                        <li>Art-175 is able to exert cell lytic activity on planktonic <i>E. coli</i> and <i>P.
 
                                            putida</i></li>
 
                                        <li>Art-175 is able to kill a portion of biofilm-encased <i>P. putida</i> cells</li>
 
                                    </ul>
 
                                    <br>
 
                                    <p>
 
                                        The results and in-depth discussion of our experimental work can be found on the <a
 
                                            href="https://2015.igem.org/Team:Oxford/Experiments">Experiments</a> page.
 
                                    </p>
 
                                </div>
 
                            </div>
 
                            <div class="section-spacer"></div>
 
                            <div class="section" id="improving-part-function">
 
                                <div class="slim">
 
                                    <h2>Improving Part Function</h2>
 
                                    <p>
 
                                        Improving the function of another team’s part: BBa_K729004
 
                                    </p>
 
                                    <p>
 
                                        Team UCL 2012 also had a part comprising Staphylococcal DNase with a DsbA tag upstream
 
                                        of it. We were interested in finding out:
 
                                    </p>
 
                                    <ul>
 
                                        <li>Whether the DsbA 2-19 sequence is able to facilitate the export of this part of
 
                                            expression host organism E. coli MG1655
 
                                        </li>
 
                                        <li>Whether the Staphylococcal nuclease can degrade E. coli biofilms (it was shown to
 
                                            degrade S. aureus biofilms in <a
 
                                                    href="http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005822">Mann
 
                                                et al, 2009</a>)
 
                                    </ul>
 
                                    <div class="image image-full">
 
                                        <img src="https://static.igem.org/mediawiki/parts/f/fd/Oxford15-dnase_SDS-PAGE_copycopy.jpg">
 
                                        <p>Figure 14: SDS-PAGE of <i>E. coli</i> MG1655 BBa_K729004 [pBAD], 0% ara supernatant
 
                                            (A) and E. coli MG1655 BBa_K729004 [pBAD], 0.2% ara supernatant (B)</p>
 
                                    </div>
 
                                    <p> Figure 14 shows the successful DsbA-directed secretion of DNase across both cell
 
                                        membranes. </p>
 
                                    <p> A is the supernatant of uninduced E. coli MG1655 BBa_K729004 [pBAD], whilst B is the
 
                                        supernatant of 0.2% induced E. coli MG1655 BBa_K729004 [pBAD]. The band is approximately
 
                                        21 kDa, corresponding to the size of DsbA-DNase.</p>
 
                                    <div class="image image-full">
 
                                        <img src="https://static.igem.org/mediawiki/parts/5/5b/Oxford15-Bbak729004.png">
 
                                        <p>Figure 15: Expression host MG1655 BBa_K729004 [pBAD] biofilm growth assay </p>
 
                                    </div>
 
                                    <p> Figure 15 shows the effect of inducing the expression of BBa_K729004 [pBAD] on the
 
                                        ability of the host to form biofilms. The control (MG1655, pBAD/HisB, 0.2% ara) and
 
                                        MG1655, BBa_K729004[pBAD], 0% ara are both able to grow biofilms, as shown by the
 
                                        intensity of the crystal violet staining. When BBa_K729004[pBAD] is expressed, the
 
                                        intensity of the crystal violet staining is reduced, showing a diminished ability to
 
                                        grow biofilm. This data suggests that the secretion of DNase is able to inhibit biofilm
 
                                        formation. </p>
 
                                </div>
 
                            </div>
 
                            <div class="section-spacer"></div>
 
                            <div class="section" id="conclusion">
 
                                <div class="slim">
 
                                    <h2>Conclusion</h2>
 
                                    <p>
 
                                        Through our experimental work, we have successfully created and submitted 12
 
                                        sequence-confirmed BioBrick parts, 7 of which we rigorously characterized for
 
                                        antibacterial and/or antibiofilm function. We validated that Art-175 and Microcin S are
 
                                        both potent antibacterials, the former of which is shown to be even capable of killing
 
                                        antibiotic-resistant biofilm-encased bacteria. On the antibiofilm side of things, we not
 
                                        only showed that the enzymes of interest, DNase and DspB, were successfully exported
 
                                        across both membrane layers of <i>E. coli</i> following our modification of them with
 
                                        secretion tags, but also proved that the enzymes are able to refold properly
 
                                        post-secretion such that they retain their enzymatic function.
 
                                    </p>
 
                                    <p>
 
                                        In conclusion, we achieved our aim of creating bacterial "living therapeutics" - strains
 
                                        of bacteria genetically engineered to secrete functional antibiofilm and antimicrobial
 
                                        proteins towards the treatment of UTIs.
 
                                    </p>
 
                                </div>
 
                            </div>
 
                            <div class="section-spacer"></div>
 
                            <div class="section" id="future">
 
                                <div class="slim">
 
                                    <h2>Future</h2>
 
                                    <p>
 
                                        To develop our project beyond a proof-of-concept design, we would adopt a more suitable
 
                                        chassis, such as <em>Lactococcus lactis</em>. <em>L. lactis</em> has been widely used as
 
                                        a expression host for the production of proteins in both the medical and food
 
                                        industries. Being a Gram-positive species of bacteria, it is less likely to be killed by
 
                                        the same mechanisms as major Gram-negative pathogens such as <i>E. coli</i> and <i>P.
 
                                        aeruginosa</i> (e.g. Art-175's peptidoglycan lysis ability is specific for Gram-negative
 
                                        bacteria). On top of that, being Gram-positive means that it will not pose the problems
 
                                        of endotoxicity brought about by the outer membranes of Gram-negative bacteria. Using
 
                                        <em>E. coli</em> as our host was purely a starting point, in view of its ease-of-use as
 
                                        well as availability of pre-existing resources.
 
                                    </p>
 
                                    <p>
 
                                        In addition to secreting antibiofilm/antimicrobial proteins, a comprehensive treatment
 
                                        for UTIs would be a bacteria engineered to also sense and move towards biofilms. We
 
                                        conducted extensive literature review on this in the early stages of the project but,
 
                                        due to the time restraints of a summer project, could not put our ideas into practice.
 
                                        With further work, we would incorporate both a sensing and chemotaxis mechanism into our
 
                                        design.
 
                                    </p>
 
                                    <p>
 
                                        Nurses, doctors and professors all raised to us the issue of targeting the multiple
 
                                        bacterial and fungal species that are involved in UTIs, highlighting the fact that the
 
                                        problem extends further than <em>E. coli</em> and <em>P. aeruginosa</em>. We have
 
                                        explored how we would approach this in the <a
 
                                            href="https://2015.igem.org/Team:Oxford/Practices">Practices</a> page.
 
                                    </p>
 
                                    <p>
 
                                        Beyond the scientific issues of implementation, thinking seriously about the questions
 
                                        of ethics and public acceptance is also crucial for the further development of
 
                                        synbio-based medical therapies especially in view of the fact that it is currently
 
                                        illegal to even bring genetically-modified organisms outside of the laboratory
 
                                        environment. We have explored this theme also in the <a
 
                                            href="https://2015.igem.org/Team:Oxford/Practices">Practices</a> page.
 
                                    </p>
 
                                </div>
 
                            </div>
 
 
                             <div id="references">
 
                             <div id="references">
 
                                 <h2>References</h2>
 
                                 <h2>References</h2>
 
                                 <ol class="references">
 
                                 <ol class="references">
                                     <li>Global Report on Surveillance of Antimicrobial Resistance: 2014. WHO.</li>
+
                                     <li>Reference one.</li>
                                    <li>Johnson, J.R., 2004. Laboratory diagnosis of urinary tract infections in adult patients.
+
                                        Clinical infectious diseases : an official publication of the Infectious Diseases
+
                                        Society of America, 39(6), p.873; author reply 873–874.
+
                                    </li>
+
                                    <li>Zalewska-Piatek, B. et al., 2013. Biochemical characteristic of biofilm of uropathogenic
+
                                        Escherichia coli Dr+ strains. Microbiological Research, 168, pp.367–378.
+
                                    </li>
+
                                    <li>Sievert, D.M. et al., 2013. antibiotic-resistant pathogens associated with
+
                                        healthcare-associated infections: summary of data reported to the National Healthcare
+
                                        Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infection
+
                                        control and hospital epidemiology : the official journal of the Society of Hospital
+
                                        Epidemiologists of America, 34(1), pp.1–14. Available at: <a
+
                                                href="http://www.ncbi.nlm.nih.gov/pubmed/23221186">http://www.ncbi.nlm.nih.gov/pubmed/23221186</a>.
+
                                    </li>
+
                                    <li>Fux, C. a. et al., 2005. Survival strategies of infectious biofilms. Trends in
+
                                        Microbiology, 13(1), pp.34–40.
+
                                    </li>
+
                                    <li>Flemming, H.-C. &amp; Wingender, J., 2010. The biofilm matrix. Nature reviews.
+
                                        Microbiology, 8(9), pp.623–633. Available at: <a
+
                                                href="http://dx.doi.org/10.1038/nrmicro2415">http://dx.doi.org/10.1038/nrmicro2415</a>.
+
                                    </li>
+
                                    <li>Høiby, N. et al., 2010. Antibiotic resistance of bacterial biofilms. International
+
                                        Journal of antibiotic Agents, 35(4), pp.322–332.
+
                                    </li>
+
                                    <li>Briers, Y. et al., 2014. Art-175 is a highly efficient antibiotic against
+
                                        multidrug-resistant strains and persisters of Pseudomonas aeruginosa. antibiotic Agents
+
                                        and Chemotherapy, 58(7), pp.3774–3784.
+
                                    </li>
+
                                    <li>Gunzer, F., 2013. Bacterially-formed microcin S, a new antibiotic peptide, effective
+
                                        against pathogenic microorganisms, e.g. enterohaemorrhagic Escherichia coli (EHEC),
+
                                        European Patent EP2557163A1.
+
                                    </li>
+
                                    <li>Antibiotics - Side effects. Avaolable from: <a
+
                                            href="http://www.nhs.uk/Conditions/Antibiotics-penicillins/Pages/Side-effects.aspx">http://www.nhs.uk/Conditions/Antibiotics-penicillins/Pages/Side-effects.aspx</a>
+
                                        [5/06/2015]
+
                                    </li>
+
                                    <li>C. M. Kunin, “Urinary tract infections in females,” Clinical Infectious Diseases, vol.
+
                                        18, no. 1, pp. 1–12, 1994.
+
                                    </li>
+
                                    <li>J. W. Warren, “Catheter-associated urinary tract infections,” Infectious Disease Clinics
+
                                        of North America, vol. 11, no. 3, pp. 609–622, 1997
+
                                    </li>
+
                                    <li>A. P. Lenz, K. S. Williamson, B. Pitts, P. S. Stewart, and M. J. Franklin, “Localized
+
                                        gene expression in Pseudomonas aeruginosa biofilms,” Applied and Environmental
+
                                        Microbiology, vol. 74, no. 14, pp. 4463–4471, 2008.
+
                                    </li>
+
                                    <li>L. Zhang and T. Mah, “Involvement of a novel efflux system in biofilm-specific
+
                                        resistance to antibiotics,” Journal of Bacteriology, vol. 190, no. 13, pp. 4447–4452,
+
                                        2008.
+
                                    </li>
+
                                    <li>J. Klebensberger, A. Birkenmaier, R. Geffers, S. Kjelleberg, and B. Philipp, “SiaA and
+
                                        SiaD are essential for inducing autoaggregation as a specific response to detergent
+
                                        stress in Pseudomonas aeruginosa,” Environmental Microbiology, vol. 11, no. 12, pp.
+
                                        3073–3086, 2009
+
                                    </li>
+
                                    <li>U. Römling and C. Balsalobre, “Biofilm infections, their resilience to therapy and
+
                                        innovative treatment strategies,” Journal of Internal Medicine, vol. 272, no. 6, pp.
+
                                        541–561, 2012
+
                                    </li>
+
                                    <li>Hale, S.P., Poole, L.B. &amp; Gerlt, J. a, 1993. Mechanism of the reaction catalyzed by
+
                                        staphylococcal nuclease: identification of the rate-determining step. Biochemistry,
+
                                        32(29), pp.7479–7487
+
                                    </li>
+
                                    <li>Vondervizst, F., Sajó, R., Dobó, J., &amp; Závodszky, P. (2012). The Use of a Flagellar
+
                                        Export Signal for the Secretion of Recombinant Proteins in Salmonella. In: Recombinant
+
                                        Gene Expression - Reviews and Protocols, Methods in Molecular Biology, 824, 131-143.
+
                                    </li>
+
                                    <li>Guddat, L.W., Bardwell, J.C. &amp; Martin, J.L., 1998. Crystal structures of reduced and
+
                                        oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure
+
                                        (London, England : 1993), 6(6), pp.757–767.
+
                                    </li>
+
                                    <li>Heras, B. et al., 2009. DSB proteins and bacterial pathogenicity. Nature reviews.
+
                                        Microbiology, 7(3), pp.215–225.
+
                                    </li>
+
                                    <li>Schierle, C.F. et al., 2003. The DsbA signal sequence directs efficient, cotranslational
+
                                        export of passenger proteins to the Escherichia coli periplasm via the signal
+
                                        recognition particle pathway. Journal of Bacteriology, 185(19), pp.5706–5713.
+
                                    </li>
+
                                    <li>Steiner, D. et al., 2006. Signal sequences directing cotranslational translocation
+
                                        expand the range of proteins amenable to phage display. Nature biotechnology, 24(7),
+
                                        pp.823–831.
+
                                    </li>
+
                                    <li>Božić, N. et al., 2013. The DsbA signal peptide-mediated secretion of a highly efficient
+
                                        raw-starch-digesting, recombinant α-amylase from Bacillus licheniformis ATCC 9945a.
+
                                        Process Biochemistry, 48(3), pp.438–442.
+
                                    </li>
+
                                    <li>Zhang, G., Brokx, S. &amp; Weiner, J.H., 2006. Extracellular accumulation of recombinant
+
                                        proteins fused to the carrier protein YebF in Escherichia coli. Nature biotechnology,
+
                                        24(1), pp.100–104.
+
                                    </li>
+
                                    <li>Fisher, A.C. et al., 2011. Production of secretory and extracellular N-linked
+
                                        glycoproteins in Escherichia coli. Applied and Environmental Microbiology, 77(3),
+
                                        pp.871–881.
+
                                    </li>
+
                                    <li>Hwang, I.Y. et al., 2014. Reprogramming microbes to be pathogen-Seeking killers. ACS
+
                                        Synthetic Biology, 3(4), pp.228–237.
+
                                    </li>
+
                                    <li>Dramatic rise seen in antibiotic use. Available from: <a
+
                                            href="http://www.nature.com/news/dramatic-rise-seen-in-antibiotic-use-1.18383?WT.mc_id=TWT_NatureNews">http://www.nature.com/news/dramatic-rise-seen-in-antibiotic-use-1.18383?WT.mc_id=TWT_NatureNews</a>
+
                                        [17/09/2015]
+
                                    </li>
+
 
                                 </ol>
 
                                 </ol>
 
                             </div>
 
                             </div>
Line 432: Line 134:
 
                     <div class="col-md-12">
 
                     <div class="col-md-12">
 
                         <ul>
 
                         <ul>
                             <li><a href="https://twitter.com/OxfordiGEM"><i class="fa fa-twitter"></i></a></li>
+
                             <li><a href="https://www.google.com"><i class="fa fa-twitter"></i></a></li>
                             <li><a href="https://www.facebook.com/oxfordigem"><i class="fa fa-facebook"></i></a></li>
+
                             <li><a href="https://www.google.com"><i class="fa fa-facebook"></i></a></li>
                             <li><a href="https://www.youtube.com/channel/UC7_mN7XKbmdrM1t_Nn78N-g"><i class="fa fa-youtube"></i></a>
+
                             <li><a href="https://www.google.com"><i class="fa fa-youtube"></i></a>
 
                             </li>
 
                             </li>
 
                         </ul>
 
                         </ul>
Line 440: Line 142:
 
                     <div class="col-md-12">
 
                     <div class="col-md-12">
 
                         <p>
 
                         <p>
                             Made with love <i class="fa fa-heart"></i> by Oxford iGEM
+
                             Footer.
 
                         </p>
 
                         </p>
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
        </div>
 
 
     </body>
 
     </body>
 
</html>
 
</html>

Revision as of 20:08, 16 August 2016

Title

One

Text here.

Two

  • List.
  • List.
  • List.
  • List.
  • List.

Three

Text.

"Quote"

Joe Bloggs

Text.

Four.

Caption.

Five

Text.

Five (a)

Text.

Five (b)

Text.

Five (c)

Text.

Five (c) (i)

Text.

References

  1. Reference one.