Difference between revisions of "Team:DTU-Denmark/Hardware"

Line 5: Line 5:
 
     <!-- Edited by Isabella 7-9-16 14:30 in sidebar - remove xs-hidden from sidebar -->
 
     <!-- Edited by Isabella 7-9-16 14:30 in sidebar - remove xs-hidden from sidebar -->
 
     <!-- Edited by Isabella 26-9-16-14:22 fix white space above picture, do not edit the spaces between things this create unintentional space-->
 
     <!-- Edited by Isabella 26-9-16-14:22 fix white space above picture, do not edit the spaces between things this create unintentional space-->
     <title>Bootstrap Example</title>
+
     <title>Microfermentation Platform</title>
 
     <meta charset="utf-8">
 
     <meta charset="utf-8">
 
     <meta name="viewport" content="width=device-width, initial-scale=1">
 
     <meta name="viewport" content="width=device-width, initial-scale=1">
Line 43: Line 43:
 
<div class="row"> <!--Must sorround both content and sidebar-->
 
<div class="row"> <!--Must sorround both content and sidebar-->
 
     <div class="col-md-9 col-sm-10 colLeft"> <!-- LEFT -->
 
     <div class="col-md-9 col-sm-10 colLeft"> <!-- LEFT -->
         <div><a class="anchor" id="section-1"></a>
+
         <div><a class="anchor" id="overview"></a>
 
         <h2 class="h2">Overview</h2>
 
         <h2 class="h2">Overview</h2>
           
 
 
             <blockquote class="visible-xs"> <!-- quote from masterhead duplicate -->
 
             <blockquote class="visible-xs"> <!-- quote from masterhead duplicate -->
 
                 <p>"When it comes to software, I much prefer free software, because I have very seldom seen a program that has worked well enough for my needs, and having sources available can be a life-saver."</p>
 
                 <p>"When it comes to software, I much prefer free software, because I have very seldom seen a program that has worked well enough for my needs, and having sources available can be a life-saver."</p>
 
                 <small><cite title="Source Title">Linus Torvalds</cite></small>
 
                 <small><cite title="Source Title">Linus Torvalds</cite></small>
 
             </blockquote>
 
             </blockquote>
              
+
             <p>An important part of our project was the <a href="link">screening for substrates</a> All this data was generated using a Hamilton robot for liquid handling. This robot enabled us to find the right organism to degrade our oily waste product. Such experiments are generally a great tool, to validate the growth on particular substrates or the degradation of toxic compounds. Furthermore, they can be used to compare different strains. However, we realized that it is a technology not everyone has access to.  
           
+
<p>
+
                A short paragraph that summarizes the project. around 200 words
+
 
             </p>
 
             </p>
 
+
            <p>
<h3 class="h3">The problem</h3>
+
            To challenge this, we started a hardware project aiming to develop a cheap alternative to the Hamilton robot. A small device, that would enable hackerspaces and highschoolers to easily acquicire and compare growth data for their projects. To make this device as cheap as possible, we reduced the Hamilton to its key features:
                <p>
+
            </p>
                     Mission statement
+
            <div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
                </p><p>
+
                <div class="panel panel-default">
                     Highlighting the relevance in Synbio
+
                    <a data-toggle="collapse" href="#collapse1" aria-expanded="false" aria-controls="collapse1"> <!--change x2-->
                 </p>
+
                        <div class="panel-heading" role="tab" id="heading1"> <!--change x1-->
 +
                            <h4 class="panel-title">Requirements for our robot</h4>
 +
                        </div>
 +
                     </a>
 +
                    <div id="collapse1" class="panel-collapse collapse" role="tabpanel" aria-labelledby="heading1"> <!-- change x2 -->
 +
                        <div class="panel-body">
 +
                            <p>
 +
                                <ul>
 +
                                    <li><a href="#od">OD</a>-measurements</li>
 +
                                    <li>Aeriation</li>
 +
                                    <li>Stirring</li>
 +
                                    <li>Automatation</li>
 +
                                    <li>Data-logging</li>
 +
                                </ul>
 +
                            </p><p>
 +
                                In order to optimize this prototype for our prospective users, we imposed these additional requirements:
 +
                                <ul>
 +
                                    <li>Simply reproducable from online material</li>
 +
                                    <li>Development using only free soft- and hardware</li>
 +
                                    <li>Modular and expandable design</li>
 +
                                </ul>
 +
                            </p>
 +
                        </div>
 +
                     </div>
 +
                 </div>
 +
            </div>
 +
               
 
             <h3 class="h3">Results</h3>
 
             <h3 class="h3">Results</h3>
 
                 <p>
 
                 <p>
                     An overview of our achievements
+
                     In summary, we managed to:
                </p><p>
+
                    <ul style="list-style-type:none">
                     short
+
                        <li> &#10003; Build a working prototype</li>
 +
                        <li><a href="#make">&#10003; Provide a manual to rebuild this at a cost of approx. US$ 150</a></li>
 +
                        <li><a href="#poc">&#10003; Demonstrate its functionality</a></li>
 +
                        <li><a href="#users">&#10003; Integrate feedback from prospective users</a></li>
 +
                        <li><a href="#dev">&#10003; Provide all source files for other developers</a></li>
 +
                     </ul>
 
                 </p>
 
                 </p>
           
 
 
 
         </div> <!-- /overview-->
 
         </div> <!-- /overview-->
 
          
 
          
         <div><a class="anchor" id="section-2"></a>
+
         <div><a class="anchor" id="theory"></a>
 
         <h2 class="h2">Theory</h2>
 
         <h2 class="h2">Theory</h2>
             <h3 class="h3">Optical density</h3>
+
             <h3 class="h3">Growth rates and spectrophotometry</h3>
 +
                <h4 class="h4">Basic concept</h4>  
 
                 <p>
 
                 <p>
 
                     Paragraph
 
                     Paragraph
Line 80: Line 106:
 
                     Paragraph
 
                     Paragraph
 
                 </p>
 
                 </p>
            <h3 class="h3">Growth curves</h3>
+
                <h4 class="h4">Measuring OD</h4>
 +
                <h4 class="h4">Growth curves of microorganisms</h4>
 
                 <p>
 
                 <p>
 
                     Paragraph
 
                     Paragraph
Line 86: Line 113:
 
                     Paragraph
 
                     Paragraph
 
                 </p>
 
                 </p>
             <h3 class="h3">Fermentation conditions</h3>
+
             <h3 class="h4">From Spectrophotometer to Fermenter</h3>
 
                 <p>
 
                 <p>
 
                     Paragraph
 
                     Paragraph
Line 93: Line 120:
 
                 </p>
 
                 </p>
 
         </div>
 
         </div>
       
 
        <div><a class="anchor" id="section-3"></a>
 
        <h2 class="h2">Proof of concept</h2>
 
            <p>
 
                Showing of our data
 
            </p>
 
  
        </div>
+
         <div><a class="anchor" id="users"></a>
 
+
         <div><a class="anchor" id="section-4"></a>
+
 
         <h2 class="h2">User testing</h2>
 
         <h2 class="h2">User testing</h2>
 
             <p>
 
             <p>
                 Showing how we tested it
+
                 This device is meant to go out to fellow iGEMers and Hackerspaces. So intuitively we brought it to our friends from the local hackerspace Biologigaragen and our highschool student Tobias
 +
            </p>
 +
        <h3 class="h3">Higschool student: Tobias</h3>
 +
            <p>
 +
            Tobias had no problems following the protocol we wrote. He liked the menu and the overall design. However, he mentioned that it was difficult to take the cuvettes out again from the robot because the holder is embedded very deeply in the housing. He helped himself by removing a panel and accessing the chambers from the side. A future prototype might be build slightly larger in order to increase comfort.
 +
            </p><p>
 +
            However, we also detected one major flaw. The protocol given to him did not include a point about regulating the airflow and the pump was only switched on while running the fermentation. Therefore he did not adjust it, causing most of the liquids to spill out in the housing and causing the program to crash. Consequently we adapted the protocol and the program so that the airflow could be regulated correctly prior to fermentation.
 +
            </p>
 +
           
 +
        <h3 class="h3">Hackerspace: Biologigaragen</h3>
 +
      </div>
 +
     
 +
      <div><a class="anchor" id="poc"></a>
 +
        <h2 class="h2">Proof of concept</h2>
 +
            <p>During the <a href="#dev">development</a>, the design had to be tested several times and the results are shown there. After testing the protocol with Tobias, we ran a final test to prove that the overall concept is working now. The results are shown below
 
             </p>
 
             </p>
 
         </div>
 
         </div>
  
         <div><a class="anchor" id="section-5"></a>
+
         <div><a class="anchor" id="dev"></a>
 
         <h2 class="h2">Development</h2>
 
         <h2 class="h2">Development</h2>
             <p>
+
             <h3 class="h3"> Prototyping ABC<h3>
                 Version history in chronological order
+
                <p>
 +
                 The prototype was build using laser cutting, 3D-printing and printed custom boards (PCB). It is controlled by an Arduino UNO R3 that was programmed using the Arduino IDE. All the files are created in the native formats of open source programs. We have used the following programs and recomend them, as the source files are in the respective native formats. In addition, all these programs have great communities to help, if you get stuck.
 +
                <ul>
 +
                <li>Vectorgraphics for laser cutting: <a href="">Inkscape</a></li>
 +
                <li>CAD drawings for 3D-printing: <a href="">FreeCAD</a></li>
 +
                <li>Programming the microcontroler: <a href="">ArduinoIDE</a></li>
 +
                <li>PCB design:<a href="">KiCAD</a></li>
 +
              </ul>
 +
              The source files can be downloaded as compressed folders(*.zip):
 +
              <ul id="devdl">
 +
              <li><a href="">All files</a></li>
 +
              <li><a href="">3D printing</a></li>
 +
              <li><a href="">Laser cutting</a></li>
 +
              <li><a href="">Arduino code and libraries</a></li>
 +
              <li><a href="">Circuit desing and PCB layout</a></li>
 +
              </ul>
 
             </p>
 
             </p>
<h3 class="h3">Version 1</h3>
+
             
 +
<h3 class="h3">History</h3>
 
                 <p>
 
                 <p>
                     Paragraph
+
                     This is a brief overview of the development history. For a chronological order, see the <a href="">notebook</a>
                </p><p>
+
                 <h4 class="h4">Starting point</h4>
                    Paragraph
+
                 </p>
+
            <h3 class="h3">Version 2</h3>
+
 
                 <p>
 
                 <p>
                     Paragraph
+
                     Together with Erik and Martin we developed a first prototype. In this version, a single cuvette was stirried with a small magnetic pellet in a black measuring chamber. The light intensity was regulated manualy using a very precise geared potentiometer. The microcontroler received the voltage level from the photodiode, converted it into a 10bit number  and send this via USB to the laptop whiche wrote the output to a file.
                </p><p>
+
                    Paragraph
+
 
                 </p>
 
                 </p>
            <h3 class="h3">Version 3</h3>
 
 
                 <p>
 
                 <p>
                     Paragraph
+
                We learned the following:
                </p><p>
+
                     <ul>
                     Paragraph
+
                    <li>The LED remains constant during the whole duration of the experiment, giving constant light output.</li>
                </p>
+
                    <li>The Arduino requires an external power supply > 5 V  for stable voltages</li>
 +
                    <li>Magnetic stirring in a cuvette is insufficient</li>
 +
                    </ul>
 +
                    </p>
 +
                    <p>
 +
                     Martin changed the container to a small glas flask which was giving sufficient stirring and demonstrated that the measuring unit was functional. <!--growth curve-->However, the measuring cell grew even bigger. In order to reach our initial goal, we continued working on our own. We wanted to keep cuvettes as containers because they are cheap and easily available. Also our design needed the following changes
 +
                    <ul>
 +
                    <li>No magnetic stirring</li>
 +
                    <li>No manually controlled potentiometer</li>
 +
                    <li>Data logging on µSD-card</li>
 +
                    </ul>
 +
                   
 +
                    <h4 class="h4">Redesinging our own</h4>
 +
                    <p>
 +
                    We could demonstrate that aeriation via common disposable syringes and needles was possible and sufficient to homogenize a S. cerevisiae culture at a tolarable amount of foaming.<!--Video-->
 +
                    </p>
 +
                    <p>
 +
                    In addition, we managed to replace the potentiometer by a set of low-pass filters combined with the 8bit PMW output-pins of the Arduino. This cut down the cost for the potentiometer and enabled us to use an automatic calibration routine to find the level of saturation for the photodiode.
 +
                    </p>
 +
                    <p>
 +
                    We designed our own measuring cell. Compared to Martin's version it has a simpler locking mechanism to hold LEDs and photodiodes in place. It is also much smaler, takes three cuvettes and has connectors for aeration.
 +
                    </p>
 +
                    <p>After debugging our circuit on breadboards, we designed printed circuit boards. Ten boards only cost US$ 10, plus shipping.
 +
                    </p>
 +
           
 
         </div>
 
         </div>
  
         <div><a class="anchor" id="section-6"></a>
+
         <div><a class="anchor" id="make"></a>
         <h2 class="h2">Instructions and Downloads</h2>
+
         <h2 class="h2">Make your own</h2>
 
             <p>
 
             <p>
                A list of files available for download in reverse chronological order     
+
            We built this prototype with the purpose to share it with hackerspaces, highschools and other iGEM teams world wide. We cannot afford shipping devices all over the world but with the files below, you can recreate your own device, you will only need the ArduinoIDE out of the softwares mentioned before.
</p>
+
            </p><p>
<h3 class="h3">For rebuilding</h3>
+
            In principle, you can send the files out to different manufacturers and they will ship you the requested parts. We recomend this option for the circuit board, because US$ 16 for 10 copies is very good value for money. Especially if you have never soldered before, you might need one or 2 boards before you get a feeling for it.
 +
            </p><p>
 +
            For laser cutting and 3D-printing, we recommend you to ask around first. Especially 3D-printers are increasingly popular and the next fablab might be closer than you think. This will not only save you some money but bring you in contact with other makers.
 +
            </p>
 +
<h3 class="h3" id="makedl">Downloads</h3>
 
                 <p>
 
                 <p>
                     Paragraph
+
                     <ul>
                </p><p>
+
                     <li><a href="">Files, part lists and instructions for building the Microfermentation platform</a></li>
                     Paragraph
+
                     <li><a href="">Instruction on how to use it</a></li>
                </p>
+
                     </ul>
            <h3 class="h3">For development</h3>
+
                <p>
+
                     Paragraph
+
                </p><p>
+
                     Paragraph
+
 
                 </p>
 
                 </p>
 
         </div>
 
         </div>
  
         <div><a class="anchor" id="section-7"></a>
+
         <div><a class="anchor" id="ackno"></a>
 
         <h2 class="h2">Acknowledgements</h2>
 
         <h2 class="h2">Acknowledgements</h2>
              
+
             <p>
<h2>iGEM info</h2>
+
            We have worked very hard this summer to create this device and achieved something that seemed totally out of reach only a few months ago. This would not have been possible without the help of other people. We would especially like to thank our supervisor Chris and Martin and Erik to pushing this project into the right direction. To see who else helped us along the way, see the full credit on our <a href="">Acknowledgements page</a>
+
            </p>
<p>iGEM is about making teams of students making synthetic biology projects. We encourage teams to work with parts and build biological devices in the lab. But we are inclusive and want all teams to work on many other types of problems in synbio. Robotic assembly, microfluidics, low cost equipment and measurement hardware are all areas ripe for innovation in synbio. </p>
+
 
+
<p>
+
Teams who are interested in working with hardware as a side project are encouraged to apply for the hardware award.
+
</p>
+
 
+
<h5>Inspiration</h5>
+
<p>You can look at what other teams did to get some inspiration! <br />
+
Here are a few examples:</p>
+
<ul>
+
<li><a href="https://2015.igem.org/Team:TU_Delft">2015 TU Delft  </a></li>
+
<li><a href="https://2015.igem.org/Team:TU_Darmstadt">2015 TU Darmstadt</a></li>
+
<li><a href="https://2015.igem.org/Team:Cambridge-JIC">2015 Cambridge JIC</a></li>
+
</ul>
+
 
         </div>
 
         </div>
 
     </div> <!-- /LEFT -->
 
     </div> <!-- /LEFT -->
Line 178: Line 230:
 
     <div class="col-md-3 col-sm-2 colRight" id="scrollspy">  
 
     <div class="col-md-3 col-sm-2 colRight" id="scrollspy">  
 
         <ul class="nav" id="sidebar">
 
         <ul class="nav" id="sidebar">
             <li><a href="#section-1">Overview</a></li>
+
             <li><a href="#overview">Overview</a></li>
             <li><a href="#section-2">Theory</a></li>
+
             <li><a href="#theory">Theory</a></li>
             <li><a href="#section-3">Proof of concept</a></li>
+
             <li><a href="#users">User testing</a></li>
             <li><a href="#section-4">User testing</a></li>
+
             <li><a href="#poc">Proof of concept</a></li>
             <li><a href="#section-5">Development</a></li>
+
             <li><a href="#dev">Development</a></li>
             <li><a href="#section-6">Build your own!</a></li>
+
             <li><a href="#make">Make your own</a></li>
             <li><a href="#section-7">Acknowledgements</a></li>
+
             <li><a href="#ackno">Acknowledgements</a></li>
 
         </ul>
 
         </ul>
 
     </div> <!-- /RIGHT -->
 
     </div> <!-- /RIGHT -->

Revision as of 11:54, 18 October 2016

New HTML template for the wiki




Microfermentation Platform

Microfermentation platform

When taking your synbio project to real applications, fast growth is crucial for viability. We took the concept of a DIY spectrophotometer and expanded it to a device that carries out three small scale fermentations simultaneously. With the files provided below you can build your own microfermentation platform, to compare the performance of our modified strain against a wild type or evaluate different growth media.


Overview

"When it comes to software, I much prefer free software, because I have very seldom seen a program that has worked well enough for my needs, and having sources available can be a life-saver."

Linus Torvalds

An important part of our project was the screening for substrates All this data was generated using a Hamilton robot for liquid handling. This robot enabled us to find the right organism to degrade our oily waste product. Such experiments are generally a great tool, to validate the growth on particular substrates or the degradation of toxic compounds. Furthermore, they can be used to compare different strains. However, we realized that it is a technology not everyone has access to.

To challenge this, we started a hardware project aiming to develop a cheap alternative to the Hamilton robot. A small device, that would enable hackerspaces and highschoolers to easily acquicire and compare growth data for their projects. To make this device as cheap as possible, we reduced the Hamilton to its key features:

  • OD-measurements
  • Aeriation
  • Stirring
  • Automatation
  • Data-logging

In order to optimize this prototype for our prospective users, we imposed these additional requirements:

  • Simply reproducable from online material
  • Development using only free soft- and hardware
  • Modular and expandable design

Results

In summary, we managed to:

Theory

Growth rates and spectrophotometry

Basic concept

Paragraph

Paragraph

Measuring OD

Growth curves of microorganisms

Paragraph

Paragraph

From Spectrophotometer to Fermenter

Paragraph

Paragraph

User testing

This device is meant to go out to fellow iGEMers and Hackerspaces. So intuitively we brought it to our friends from the local hackerspace Biologigaragen and our highschool student Tobias

Higschool student: Tobias

Tobias had no problems following the protocol we wrote. He liked the menu and the overall design. However, he mentioned that it was difficult to take the cuvettes out again from the robot because the holder is embedded very deeply in the housing. He helped himself by removing a panel and accessing the chambers from the side. A future prototype might be build slightly larger in order to increase comfort.

However, we also detected one major flaw. The protocol given to him did not include a point about regulating the airflow and the pump was only switched on while running the fermentation. Therefore he did not adjust it, causing most of the liquids to spill out in the housing and causing the program to crash. Consequently we adapted the protocol and the program so that the airflow could be regulated correctly prior to fermentation.

Hackerspace: Biologigaragen

Proof of concept

During the development, the design had to be tested several times and the results are shown there. After testing the protocol with Tobias, we ran a final test to prove that the overall concept is working now. The results are shown below

Development

Prototyping ABC

The prototype was build using laser cutting, 3D-printing and printed custom boards (PCB). It is controlled by an Arduino UNO R3 that was programmed using the Arduino IDE. All the files are created in the native formats of open source programs. We have used the following programs and recomend them, as the source files are in the respective native formats. In addition, all these programs have great communities to help, if you get stuck.

The source files can be downloaded as compressed folders(*.zip):

History

This is a brief overview of the development history. For a chronological order, see the notebook

Starting point

Together with Erik and Martin we developed a first prototype. In this version, a single cuvette was stirried with a small magnetic pellet in a black measuring chamber. The light intensity was regulated manualy using a very precise geared potentiometer. The microcontroler received the voltage level from the photodiode, converted it into a 10bit number and send this via USB to the laptop whiche wrote the output to a file.

We learned the following:

  • The LED remains constant during the whole duration of the experiment, giving constant light output.
  • The Arduino requires an external power supply > 5 V for stable voltages
  • Magnetic stirring in a cuvette is insufficient

Martin changed the container to a small glas flask which was giving sufficient stirring and demonstrated that the measuring unit was functional. However, the measuring cell grew even bigger. In order to reach our initial goal, we continued working on our own. We wanted to keep cuvettes as containers because they are cheap and easily available. Also our design needed the following changes

  • No magnetic stirring
  • No manually controlled potentiometer
  • Data logging on µSD-card

Redesinging our own

We could demonstrate that aeriation via common disposable syringes and needles was possible and sufficient to homogenize a S. cerevisiae culture at a tolarable amount of foaming.

In addition, we managed to replace the potentiometer by a set of low-pass filters combined with the 8bit PMW output-pins of the Arduino. This cut down the cost for the potentiometer and enabled us to use an automatic calibration routine to find the level of saturation for the photodiode.

We designed our own measuring cell. Compared to Martin's version it has a simpler locking mechanism to hold LEDs and photodiodes in place. It is also much smaler, takes three cuvettes and has connectors for aeration.

After debugging our circuit on breadboards, we designed printed circuit boards. Ten boards only cost US$ 10, plus shipping.

Make your own

We built this prototype with the purpose to share it with hackerspaces, highschools and other iGEM teams world wide. We cannot afford shipping devices all over the world but with the files below, you can recreate your own device, you will only need the ArduinoIDE out of the softwares mentioned before.

In principle, you can send the files out to different manufacturers and they will ship you the requested parts. We recomend this option for the circuit board, because US$ 16 for 10 copies is very good value for money. Especially if you have never soldered before, you might need one or 2 boards before you get a feeling for it.

For laser cutting and 3D-printing, we recommend you to ask around first. Especially 3D-printers are increasingly popular and the next fablab might be closer than you think. This will not only save you some money but bring you in contact with other makers.

Downloads

Acknowledgements

We have worked very hard this summer to create this device and achieved something that seemed totally out of reach only a few months ago. This would not have been possible without the help of other people. We would especially like to thank our supervisor Chris and Martin and Erik to pushing this project into the right direction. To see who else helped us along the way, see the full credit on our Acknowledgements page

  • FIND US AT:
Facebook Twitter
  • DTU BIOBUILDERS
  • DENMARK
  • DTU - SØLTOFTS PLADS, BYGN. 221/002
  • 2800 KGS. LYNGBY

  • E-mail:
  • dtu-biobuilders-2016@googlegroups.com
  • MAIN SPONSORS:
Lundbeck fundation DTU blue dot Lundbeck fundation Lundbeck fundation